
1

Karenbak-1 computer manual

Index

Chapter 1 Motivation and overview .. 2
Chapter 2 Manual controls ... 4
Chapter 3 Instruction set .. 5
Chapter 4 Processor timing.. 7
Chapter 5 Memory addressing ... 8
Chapter 6 Hardware circuits and descriptions.. 10
Chapter 7 Photos ... 19
Chapter 8 Finer points of the design .. 20
Chapter 9 Software .. 21
Chapter 10 Conclusion... 22

Disclaimer

The information in this document is provided purely as a record of the construction of one of my
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths,

injuries or losses resulting from the use of the information contained in this document. I have no
claims to most of the technology used in my projects or described in this document, indeed, it must be

assumed that I have used much copyrighted and/or patented material. But since I do what I do for
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking
the law. It is up to the individual using the information in this document to determine whether, and to
ensure that, their use of the information I provide is both legal and safe. This is supposed to be fun.

© Karen Orton 2018 All rights reserved

2

Chapter 1 Motivation and overview

The computer described in this document was originally inspired by one the very
earliest 'first generation' machines specifically, the Electronic Delay Storage
Automatic Calculator (EDSAC). This machine was built around 1949 and relied on a
delay medium for its main memory. The initial plan was to build a fully transistorised
computer however, as time passed the plan evolved into a computer based on
CMOS logic. As a consequence, the final result more closely resembles the 'Kenbak-
1' computer of the very early 1970s. Accordingly, the new machine was christened
the 'Karenbak-1'.

The Kenbak-1 computer

Like the Kenbak-1, the Karenbak-1 is comprised almost entirely of small scale
integration (SSI) and medium scale integration (MSI) integrated circuits. The single
exception is the memory IC for which a shift register is used. The shift registers
employed in the Kenbak-1 are hard to obtain now, and so this role has been fulfilled
by a bucket brigade device (BBD) in the new machine. My choice of logic family
(HCMOS) is entirely down to what I had in my parts store.

The Karenbak-1 is minimalist, employing only 25 ICs, the aim being economy of
hardware rather than speed. It has a serial arithmetic and logic unit (ALU). Bits are
processed least significant bit (LSB) first, since this facilitates the natural flow of the
carry/borrow signal during addition and subtraction. A left shift (useful for
multiplication) is also easily implemented within this scheme.

The Karenbak-1 is an 8 bit, single address machine with just three registers
accessible to the user: a program counter (PC); an accumulator (ACC); and a
memory address register (MAR). A fourth register, the instruction register (IR), is not
accessible to the user. The Karenbak-1 processor executes approximately 100
instructions per second.

One operand for dyadic operators is always the ACC. Results of operations are
always returned to the ACC. Immediate addressing mode is not supported; it is
expected that constants required by a program will be entered into dedicated
memory locations during program entry. Indirection is also not directly supported and

3

must be accomplished using self-modifying code, as was the practise in the very
early days of computing.

The Karenbak-1 supports program jumps, both conditional and unconditional. This
makes the Karenbak-1 'Turing complete'. There are only two status flags: HALT and
FLAG, the latter being tested by conditional jump instructions. The Karenbak-1 has
around twenty instructions in its instruction set. With minor modifications the design
can address up to 2048 bits of memory. With one or two additional ICs, the word
length could be increased to 16 bits.

It is important to point out that the minimalism of the Karenbak-1 is not shared by the
Kenbak-1. In this respect the comparison is a poor one. The latter was aimed at the
educational market and as such, was entirely representative of other machines of its
day (for instance, the Kenbak-1 has multiple addressing modes and an index
register). By contrast, the Karenbak-1 architecture is some twenty years behind the
Kenbak-1.

4

Chapter 2 Manual controls

The Karenbak-1 front panel has the following controls and indicators:

RESET button
Pressing this button puts the computer into known state.
All registers are cleared and the computer is put into a
HALT state. Reset does not affect memory contents.

MODE switch This switch selects between four main activities.

COMMAND button
Pressing this button orders the option selected on the
MODE switch.

Data input switches
Data entry for programming or data input is set on these
switches.

Address LEDs
These LEDs show the current address for program entry
or examination. They display the contents of the MAR.

Data LEDs
These LEDs show the current data for program entry or
examination. They display the contents of the ACC.

The MODE switch is the main control. It selects between four basic activities:

PROGRAM

In this mode, pressing the COMMAND button will cause
the data switches to be displayed on the data LEDs, and
also stored at the location indicated on the address LEDs.
The address will automatically increment following the
write to memory.

EXAMINE

In this mode, pressing the COMMAND button will cause
the contents of the memory at the address indicated on
the address LEDs to be displayed on the data LEDs. The
address will automatically increment following the read
from memory.

INPUT

In this mode, pressing the COMMAND button will cause
the data switches to be loaded into the ACC. This is
typically done when a program HALTs for input of data.
The program can be resumed using the EXECUTE mode.

EXECUTE

In this mode, pressing the COMMAND button will cause
the computer to begin execution. A prior reset should be
performed to run a program from its start. Where a
program has halted for data input, it can be resumed
using this mode, whereupon the program will continue
from the instruction following the HALT.

It is permissible to switch between 'PROGRAM' and 'EXAMINE' while stepping
through memory however, there is no means to decrement the address.

5

Chapter 3 Instruction set

While there are notionally single word instructions and two word instructions, all
instructions are in truth single word. Where an instruction requires an operand
address, this is obtained using a prior 'load MAR' instruction.

Single word instructions

Opcode Encoding FLAG Description

HALT 0 0 0 0 0 0 0 0 00 - Stop computer

NOP 1 1 0 0 0 0 1 1 C3 - No operation

SETF 1 0 1 0 0 0 0 0 A0 1 Set FLAG

CLRF 1 0 1 1 0 0 0 0 B0 0 Clear FLAG

SENS 1 0 0 0 0 0 0 1 81 Z Sense switches

NOT 1 0 0 0 0 1 1 0 86 Z Invert ACC

LSH 1 0 0 0 0 1 1 1 87 LSB / MSB Left shift ACC

LDM 0 1 n n n n n n 40-7F - Load MAR

Two word instructions

Encoding
Opcode

First word Second word
FLAG Description

LD 1 0 0 0 0 0 0 0 80 - Load

LDN 1 0 0 0 1 0 0 0 88 - Load NOT

ST 1 0 0 1 0 0 0 0 90 - Store

ADD 1 0 0 0 0 0 1 0 82 C Add

SUB 1 0 0 0 1 0 1 0 8A B Subtract

AND 1 0 0 0 0 0 1 1 83 Z AND

ANDN 1 0 0 0 1 0 1 1 8B Z AND NOT

OR 1 0 0 0 0 1 0 0 84 Z OR

ORN 1 0 0 0 1 1 0 0 8C Z OR NOT

XOR 1 0 0 0 0 1 0 1 85 Z XOR

XORN 1 0 0 0 1 1 0 1 8D Z XOR NOT

JMP 1 1 0 0 0 0 0 0 C0 - Jump always

JMPS 1 1 0 0 0 0 0 1 C1 - Jump if FLAG set

JMPC

LDM
0 1 n n n n n n

(40+n)

1 1 0 0 0 0 1 0 C2 - Jump if FLAG clear

6

FLAG keys:
 - Not affected

 Z Set if any result bit is set
 C Carry
 B Borrow (inverted)

It is not mandatory to precede all instructions with a 'load MAR' instruction. The MAR
post-increments, thereby allowing data accesses that step through memory. This
feature is useful for filling memory since repeated store instructions will write the
same value to multiple locations.

Strictly speaking, the left shift instruction (LSH) is a rotate left instruction, since the
ACC LSB acquires the initial state of FLAG, while the final state of FLAG is the initial
ACC most significant bit (MSB). The no operation instruction (NOP) is actually a
'jump never' instruction.

Finally, the 'sense switches' instruction (SENS) senses the instantaneous settings of
the data input switches and does not wait for user input. Interactive user input should
use a HALT instruction to prompt the user, who should then use the INPUT mode to
enter data. A useful trick when using HALTs in this manner is to precede the HALT
instruction with a LDM (load MAR) instruction. This will allow a number to be
displayed on the address LEDs while the user is being prompted, which can serve as
an identifier for the wanted information. In this respect one can view the HALT
instruction as a two word instruction e.g. 'HALT 3'.

7

Chapter 4 Processor timing

General timing

The processor control signals change state every 512 bit clocks. The main control
signal is FCH, which alternates between the high state (instruction fetch cycle) and
the low state (operand fetch and execute cycle).

FCH

Fetch Execute

Control
signals *

* Control signals include ACE, /ALE, JMP, ME, /MLD, PCE and /STO

Timing relative to the bit clock is as follows.

Control
signals

CLK

/CLK

DST

/DST

Data valid

8

Chapter 5 Memory addressing

The Karenbak-1 memory consists of a 1024 stage BBD - an MN3207. Although this
IC is described as having 1024 stages, the actual number of analogue samples held
at any one time is only half that figure. Hence the IC implements a 512 bit memory.
The 512 bits are organised as 64 off 8 bit words. This is a small memory, but enough
to demonstrate simple programs.

The Karenbak-1 uses an obscure method of memory addressing. The PC is of
course a counter however, its counting ability is used in a novel way to select an
instruction from memory. During a processor fetch cycle, the PC is clocked by the bit
clock. But since the PC has only 6 bits, the 512 bit clocks contained within a
processor cycle result in the PC overflowing repeatedly - eight times to be precise.
Despite the overflows, 512 counts will still return the PC to its initial state. The PC is
not therefore corrupted by 'spinning' it in this fashion.

The useful property of the PC overflowing is that each overflow of the PC can be
used to identify 8 unique bits within the memory. Each initial value of the PC will
identify a different group of 8 bits, thereby providing an addressing function. The
MSB of the program counter is in fact used to identify wanted bits, positive
transitions signalling to the instruction register that a wanted bit is currently emerging
from the serial memory. The MAR too is a counter, and identifies wanted operand
bits in the same way as the PC. The result is a strange mapping of ordinal address
to logical address:

Ordinal
bit

address

Logical
bit

number

Logical
address

1 31
2 30
.. ..
31 1
32 0
33 63
.. ..
63 33
64

0

32
65 31
66 30
.. ..
95 1
96 0
97 63
.. ..

127 33
128

1

32
..

..

..

385 31
386 30
.. ..

415 1
416 0
417 63
.. ..

447 33
448

6

32
449 31
450

7
30

9

Ordinal
bit

address

Logical
bit

number

Logical
address

.. ..
479 1
480 0
481 63
.. ..

511 33
512

32

Following a reset the PC contains zero however, the Karenbak-1 uses PC pre-
increment, and so execution will actually begin from location 1 following a reset.

Jump instructions require special attention. During the execution of a jump
instruction, the MAR is copied to the PC however, an offset is introduced by this
process. The required setting of the MAR for a jump to location N is given by:

(N + 3210) mod 6410

In practise, this just requires that the most significant bit of the jump address is
inverted. For example, to make a jump to location 1010 (0A16) the MAR should be
pre-loaded with 4210 (2A16). To jump to location 5010 (3216) the MAR should be
loaded with 1810 (1216).

Location zero

As mentioned earlier, execution begins from location 1 following a RESET. It is
recommended that location zero be programmed with the constant zero, as this
permits the following macro instructions to be used:

Address Coding Label Opcode /
Directive Operand Comment

00 ZERO DATA 00 Constant: 0

 CLR MACRO Macro: Clear accumulator
00 40 80 LD ZERO
 END

 INC MACRO Macro: Increment accumulator
00 A0 SETF
01 40 82 ADD ZERO
 END

 DEC MACRO Macro: Decrement accumulator
00 B0 CLRF
01 40 8A SUB ZERO
 END

 TSTZ MACRO Macro: Test for zero accumulator
00 B0 CLRF
01 40 84 OR ZERO
 END

10

Chapter 6 Hardware circuits and descriptions

Decoupling capacitors are not shown in the circuits that follow. A 100n decoupling
capacitor should be present close to the power pins of each IC. A single 100µ
decoupling capacitor is recommended for the entire computer. All LEDs are of the
low current (2mA) variety. The computer uses a single 5V power rail.

Memory

IC1 MN3102

OX1 OX2 OX3 VDD

VGG CP1 CP2 GND

IC2 MN3207

VGG

CP1 CP2 VDD

IN

OUT2 GND

100p
22k

100k

100k
22p

50k

47k

+
3µ3

+

-

4k7
10k OUT1

ACC

CLK

/CLK

MEM

/STO

/DST

4a
5a

3a

IC4
74HC32

GND

VCC

IC3 4053

INH

VDD

VEE GND

IC5
LM339

GND

V+

1

2 3 4

5 6 7

8

5 6 2 4

1

7 3

8

14

7

16

6 7 8

3

12

0

1

+

-

5b

47k
4k7

-

+

5c

4k7

/RST

RST

22k

+

-

5d

47k 22k
4k7

10k 100n

/CMD

4k7

4k7

+
10µ

+
10µ

RESET

COMMAND

1 2

3
7

6

1

5

4

2

8

9

14

11

10

13

12

13

14 11

IC1 furnishes anti-phase clock pulses of high drive capability. These are used
extensively throughout the design, providing a 100kHz bit clock for the system. 512

11

bit clocks (i.e. around 5 milliseconds) defines the re-circulation time of the memory. It
also defines one processor cycle.

IC2 drives its OUT1 pin when its CP2 input (CLK) is in the high state. Coincidentally,
IC2 samples its IN pin at the same time. A re-circulating digital memory is therefore
created by simply feeding OUT1 back into IN. Input conditioning consists of an
attenuator and a level shifter to bring the logic signal within the linear range of IC2's
input. Output conditioning uses a section of a quad comparator package to slice
IC2's output to convert it back to a logic level. The remaining comparators in the
quad package are used for de-bouncing the RESET and COMMAND buttons.

An analogue switch (IC3a) controls the input to IC2. Under most circumstances,
memory data is simply re-circulated. However, for a store instruction, the switch is
thrown and IC2's input is obtained from the ACC.

Program counter and instruction register

IC7 74HC4040

VCC

/CP

MR GND

100p

Q5
PCE

/CLK IC6
74HC132

GND

VCC
16

8

2 10

11

14

7

10k

6a

6c

10k

100p

10k
6b

DST

JMP

/RST

IC8
74HC04

GND

VCC
14

7

6d

100p

8a

IC9 74HC164

VCC

DSA

GND

14

7

1
CP

8
DSB

2
/MR

9

FCH

MEM

Q0

3

OP7

Q1

4
Q2

5
Q3

6
Q4

10
Q5

11
Q6

12
Q7

13

OP6

OP5

OP4

OP3

OP2

OP1

OP0

1

2

4

5
9

10

2

3

6

12

13
1

8

11

As mentioned earlier in this document, spinning the PC does not corrupt it however,
there is still a need to increment the PC in order to step through instructions. This is
achieved by another obscure method: the positive edge of the PCE signal injects an
extra count in addition to the 512 accrued during the instruction fetch cycle. This
provides a PC pre-increment.

12

Memory address register

ME

/CLK

IC10
74HC132

GND

VCC
14

7
10k

10a
10b

100p

IC13
74HC74

GND

VCC
14

7

IC11 74HC193

VCC

CPU

GND

8

5
/TCD

13
CPD

4

DST

RST

/PL

11
Q3

7
Q2

6
Q1

2
Q0

3
MR

14

OP5

OP4

OP3

OP2

OP1

OP0

D0
15

D1
1

D2
10

D3
9 16

12
/TCU IC12 74HC193

VCC

CPU

GND

8

5
/TCD

13
CPD

4

/PL

11
Q3

7
Q2

6
Q1

2
Q0

3
MR

14

D0
15

D1
1

D2
10

D3
9 16

12
/TCU

/MLD

CP

/S

13a

/R

D

/Q

Q

/DST

CLK

0 1 2 3 4 5
ADDRESS LEDS

all 1k

1

2

4

5

2

3

3
6

5

6

4

1

Like the PC, the memory address register (MAR) is a counter. During an operand
fetch/execute processor cycle, the MAR is spun, and positive transitions of the MSB
of the MAR are used to signal to the ACC and FLAG that a wanted operand bit is
currently emerging from the serial memory. The MAR has a post-increment function.
It is implemented in a very similar way to the program counter pre-increment. Post
increments of the MAR are used during manual program entry and examination.

The MAR signals the presence of wanted data on the output of the memory by
pulsing DST and /DST. These signals would typically be used to clock data into the
ACC, or to reroute the memory input source to allow data to be stored.

The MAR is key to the implementation of jump instructions. During the execute cycle
of a jump instruction, the DST signal is gated onto the reset input of the PC (IC7 pin
11). As a result, 8 reset pulses are delivered to the PC although only one is strictly
necessary. These timed resets force the PC into synchronism with the MAR and
ensure that the final state of the PC matches that of the MAR, subject to an offset.

13

Accumulator, switches and FLAG

The ACC is a shift register (IC15). When performing an arithmetic or logic operation,
the last stage (Q7) provides one bit of one operand. The corresponding bit of the
other operand comes from the memory. The result of the operation is shifted back
into the ACC via IC15's DSA input. Input from the switches is provided by IC16, a
multiplexer. During program entry or data input, the data on the switches appear bit
at a time on the IP signal.

An analogue switch (IC3b) controls the input to IC15. During execution of an
arithmetic or logical operation, the switch is thrown to select the output of the ALU.
During a store instruction, ACC data is re-circulated so as to preserve the ACC
contents. A similar analogue switch (IC3c) preserves the state of the FLAG (held by
flip-flop IC13b) during a store instruction.

Instruction decode and sequencing

IC17 maintains track of data in the circulating memory. It is also responsible for the
main sequencing of the computer: Q9 of this counter alternates between 512 bit
clocks high, and 512 bit clocks low. When the computer is running, the high state of
this signal corresponds to an instruction fetch cycle, while the low state corresponds
to the operand fetch and execute cycle. The stopped state is implemented as a
protracted HALT instruction (the all-zeros state of the IR). While the /Y0 output of
IC20a is low IC17 Q9 cannot drive FCH, and so instruction fetches cease. This state
can be exited by setting the MODE switch to the last setting (EXECUTE) and
pressing the COMMAND button.

IC18 and associated gates generate a negative going pulse of exactly one processor
cycle duration when the COMMAND button is pressed. This pulse is used to
implement the various mode switch functions. Depending on the setting of the
MODE switch, the COMMAND button can order a write of switch data to memory, a
read of data from memory into the ACC, a transfer of switch data to the ACC (for
interactive data input) or a program start.

Finally, IC21a,b and IC22a implement the conditional logic for the jump instruction.

14

14a
DST

ACE

/RST

14b 8b

IC15 74HC164

VCC

DSA

GND

14

7

1
CP

8
DSB

2
/MR

9

Q0

3
Q1

4
Q2

5
Q3

6
Q4

10
Q5

11
Q6

12
Q7

13

3b 0

1

1 2 3 6 7

DATA LEDS
4 5

/ALE

AOA

MODE

IC16 74HC151

VCC

Y

GND

16

8

5
S2

9
S0

11
S1

10

I7

12
I6

13
I5

14
I4

15
I3

1
I2

2
I1

3
I0

4

B2

B1

B0

/Y
6

/E
7

3c 0

1

DATA SWITCHES

FLG

CP

/S

13b

/R

D

/Q

Q

/FLG

ACC

/RST

/CF

AOF
/SF

0 1 2 3 6 7 4 5

IP

1

2

10

9 12

11

4

15

3

4 9

8

3
4

5

2

1

5
10

4

3

13

all 1k

all 10k

6

0

100p

100p

IC14
74HC00

GND

VCC
14

7

10k

15

100p

/CLK
IC21

74HC32
GND

VCC
14

7

10k

10c 10k

ME

IC20
74HC139

GND

VCC
16

8

8c

FCH

OP7

OP6

OP5

OP4

10k

10k

PCE 4b

/Y3

/Y2

/Y1

/Y0

/E

A1

A0

20a

MODE

4c

JMP

/MLD

/Y3

/Y2

/Y1

/Y0

/E

A1

A0

20b

/CF

/SF

/STO

/ALE

4d

ACE

8d

/FLG

OP1

FLG

OP0

19a

22a

19d

IC17 74HC4040

VCC

/CP

MR GND

Q9

16

8

14 10

11

14c
14d

HALT LED

B2

B1

B0

Q8

12
Q7

13
Q6

4

9

10

4

5

6

9

10

1

3

2

15

13

14

12

13

1

2

1

2
9

12

13
9

10

8

6

5

8

11

7

6

5

4

9

10

11

12

11

3

3 8

8

12 13

11

1k

IC19
74HC00

GND

VCC
14

7

CP

/S

18a

/R

D

/Q

Q
2

3

5

6

4

1

CP

/S

18b

/R

D

/Q

Q
12

11

9

8

10

13

IC18
74HC74

GND

VCC
14

7

/CMD

10k

100p

10d
12

13
11

21a
1

2
3

21b
4

5
6

19c

9 10

8

19b
4

5
6

IC22
74HC00

GND

VCC
14

7

1k

16

Arithmetic and logic unit

VCC
I0

GND

Y

IC23
74HC86

GND

VCC

16

8

5 4

14

7

22b

AOA

MEM

OP0

MODE

IP

OP3

OP1

AOF

OP2 8e

23a

23b
23c

22d

22c

ACC

FLG

I1 3

I2 2

I3 1

I4
15

I5 14

I6 13

I7 12

/Y 6

/E
7

S0
11

S1
10

S2 9

21c

23d

8f

VCC
I0

GND

Y

16

8

5 4

I1 3

I2 2

I3 1

I4 15

I5 14

I6 13

I7
12

/Y 6

/E 7

S0
11

S1
10

S2 9

21d

IC24
74HC151

IC25
74HC151

1

2
3

4

5
6 9

10
8

12

13
11

4

5
6

9

10
8

12

13
11

9

10
8

12

13
11 11

13 12

10

10k

1k

The ALU is fairly conventional, save for processing only one bit at a time.
Multiplexers (ICs 24 and 25) select the operation to be performed for both the ACC
and the FLAG. While not strictly an arithmetic or logical operation, the load
instruction is implemented in the ALU (input I0 of the two multiplexers). Input from
the switches is possible on multiplexer input I1. Switch input can be user-interactive
(using INPUT mode while the computer is HALTed) or they can be sensed
asynchronously using the SENS instruction.

A full adder provides for both addition and subtraction, the FLAG serving to
propagate carry/borrow status. For add instructions, the FLAG should be cleared
prior to execution. For subtract instructions, the FLAG should be set prior to
execution. On completion of an addition or subtraction instruction, a word
carry/borrow is deposited in FLAG, thereby permitting multi-word additions and
subtractions. Note that one bit of the operation code (OP3) selects between normal
or inverted operand data from memory. This greatly increases the flexibility of the
ALU.

17

The FLAG performs a special function during execution of logical operations (AND,
ANDN, OR, ORN, XOR, XORN or NOT). When one of these instructions is
executing, the FLAG will be logically ORed with all bits of the result. Consequently,
the FLAG should be cleared prior to execution, so as to enable a zero result to be
tested for after execution. Finally, the multiplexer I7 inputs implement the left shift
instruction, whereby the ACC and FLAG simply exchange states.

List of ICs

IC number(s) Pin count Type

IC1 8 MN3102

IC2 8 MN3207

IC3 16 CD4053

IC4, 21 14 74HC32

IC5 14 LM339

IC6, 10 14 74HC132

IC7, 17 16 74HC4040

IC8 14 74HC04

IC9, 15 14 74HC164

IC11, 12 16 74HC193

IC13, 18 14 74HC74

IC14, 19, 22 14 74HC00

IC16, 24, 25 16 74HC151

IC20 16 74HC139

IC23 14 74HC86

18

Card layout

IC20 IC18 IC17 IC7 IC24

IC4 IC19 IC8 IC21 IC23

IC2 IC1 IC14 IC9 IC6 IC22

IC13 IC12 IC10 IC25

IC5 IC3 IC15 IC11 IC16

Mode
switch

Buttons,
address/halt LEDs

Data LEDs Data switches

Power

19

Chapter 7 Photos

20

Chapter 8 Finer points of the design

The capacitor on the output of IC2 serves to extend the valid time of the conditioned
memory output. This gives other devices within the computer time to capture
memory data as CLK returns to the low state and IC2's output returns to a quiescent
level.

The rising edge of PCE injects a count into IC7 (the PC). This provides the PC pre-
increment. It is possible that this count may cause the IR to shift in an erroneous bit.
This in itself is not a problem because 8 further shifts would then occur, and the
erroneous bit would ultimately be shifted out of the IR. The hazard is transient false
decodes on the outputs of IC20, which may occur if IC20's address inputs (which
derive from the IR) change too close to the rising edge of FCH. While it is thought
that this is unlikely, the PCE signal is delayed slightly by an RC network on the input
to IC6a. This will prevent transient false decodes from ever occurring.

During execution of a jump instruction, reset pulses are delivered to IC7 (the PC)
which originate from the MAR's DST signal. The problem is that the trailing edges of
these reset pulses coincide with valid count transitions on IC7's clock input. This
makes it uncertain whether the count transition will be recognised and acted upon.
To ensure that these count transitions are NOT acted upon, the reset pulses are
delayed slightly by an RC network on the input to IC6c.

During an instruction fetch, the IR shifts in memory data on positive transitions of
IC7's (the PC) Q5 output. These shifts must be gated by the FCH control signal
however, it is not sufficient to use a simple gate because, depending on the initial
state of IC7 Q5, an additional shift may occur on the rising edge of FCH. This might
lead to transient false decodes (see paragraph before last). To prevent this, a
monostable is implemented by a CR network on the input to IC6d.

The MAR (ICs11,12) is incremented on the leading edge of the clock. If the MSB of
the MAR makes a positive transition as a result, then IC13a will be clocked,
however, IC13a is only just coming out of reset at this time. In order to move the
MAR increment, and any resulting IC13a clock, away from this condition (CLK low),
a monostable is implemented by a CR network on the input to IC10b. The MAR is
incremented at the end of the pulse on IC10b's output.

The MAR is also incremented on the falling edge of ME. This provides the MAR
post-increment. This increment does not result in a spurious DST pulse on the output
of IC13a because this flip-flop is held in the reset state (by CLK) when ME is falling.

Control signals must change only between bit clocks (see timing diagrams in
Chapter 4). This is ensured by an RC delay network on the input to IC10c.

ICs 13b and 15 are often called upon to sample their own output. It is important to
ensure that their inputs (D for IC13b, DSA for IC15) have sufficient data hold time.
The capacitors on these inputs extend this hold time.

21

Chapter 9 Software

No assembler has yet been written for the Karenbak-1 and the following example
program is hand coded. Presented is a simple program which multiplies two
unsigned eight bit numbers:

Address Coding Label Opcode /
Directive Operand Comment

00 00 ZERO DATA 00 Constant: 0

01 40 80 START LD ZERO Prepare to multiply:
03 75 90 ST HBE Clear HBE
05 90 ST Clear RESH
06 90 ST Clear RESL
07 79 80 LD ONE Initialise bit mask
09 78 90 ST MASK
0B 74 80 LOOP LD MULB Multiply loop: Bit set?
0D B0 CLRF
0E 78 83 AND MASK
10 7F C2 JMPC @SHIFT
12 73 80 LD MULA Yes - add to result
14 B0 CLRF
15 77 82 ADD RESL
17 77 90 ST RESL
19 75 80 LD HBE
1B 76 82 ADD RESH
1D 76 90 ST RESH
1F 73 80 SHIFT LD MULA Shift everything along
21 B0 CLRF
22 87 LSH
23 73 90 ST MULA
25 75 80 LD HBE
27 87 LSH
28 75 90 ST HBE
2A 78 80 LD MASK
2C B0 CLRF
2D 87 LSH
2E 78 90 ST MASK
30 6B C2 JMPC @LOOP All done?
32 00 HALT Yes - stop

33 A7 MULA DATA A7 First number to multiply (167)
34 5D MULB DATA 5D Second number to multiply (93)
35 00 HBE DATA 00 High byte extension
36 00 RESH DATA 00 Result (high byte)
37 00 RESL DATA 00 Result (low byte)
38 00 MASK DATA 00 Walking bit mask
39 01 ONE DATA 01 Constant: 1

Note: The '@' symbol precedes jump operands to inform the 'assembler' that the
formula supplied in Chapter 5 should be applied.

22

Chapter 10 Conclusion

Historically speaking, the fixed cycle time of the Karenbak-1 would have been
considered wasteful, even though it leads to a much simplified design. Early
computing machines that were based on circulating memory instead used
'coincidence detectors' to indicate when wanted data was emerging from the delay
medium. Instruction fetch and execution were considered separate processes which
weren't constrained to the memory circulation period. This freedom resulted in a
potential doubling of a machine's speed.

Nonetheless, the Karenbak-1 is a successful proof of concept machine. It is
expected that the design will provide useful insights into the inner workings and
principles of computer hardware. The design's only major detraction is that it is
severely lacking in memory, and this limits the scope of programs which can be
demonstrated.

It is intended that a second machine will be constructed at a future date which will be
based on the same principles as the Karenbak-1. This machine might use discrete
transistors as opposed to IC logic. It might also bring out the PC, IR and FLAG to
dedicated LEDs to create a classic 'blinkenlights' machine. Regardless, this new
machine will most definitely have a larger memory.

The Karenbak-1 is currently limited to stepping through memory in order for the user
to modify (PROGRAM) or interrogate (EXAMINE) the memory contents. This is just
about tolerable where there are only 64 words of memory. With a larger memory
however a means of setting the address directly (or at the very least, the means to
step backwards through memory) will become a necessity.

