III COMPONENTS

THERMISTORS

N.T.C. & P.T.C.

Thermistors – Negative Temperature Coefficient

Introduction

Thermistors are thermally sensitive resistors suitable for many applications, including temperature measurement, control and compensation, current surge suppression, power measurement, amplitude control, trigger circuits, measurement of velocity of liquids or gases, etc.

Bead thermistors, directly or indirectly heated, are small devices suitable for low power applications.

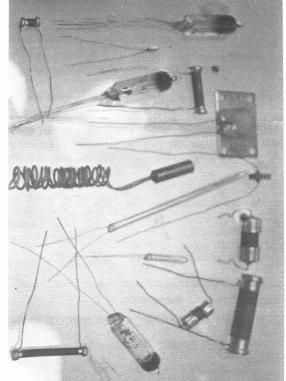
Disc types are suitable for use at higher power levels and are all directly heated.

Rod types (Brimistors) are broad tolerance thermistors, particularly suitable for surge suppression and compensation for resistance variation of other components, in radio, television, telecommunication and projection equipment.

Negative temperature coefficient thermistors have a temperature coefficient of resistance at 20°C of approximately ten times that of copper. The resistance (R_{T1}) of a thermistor at a temperature T1(°K) can be related to the resistance (R_{T2}) at any other temperature T₂(°K) by the following equation:

$$R_{T1} = R_{T2}e \left(\frac{B}{T1} - \frac{B}{T2}\right)$$

where B is the characteristic temperature of the thermistor expressed in $^{\circ}K$.


Where thermistors are designed to change their resistance as a result of an external change in temperature (e.g. F and M types), the power dissipated in them should be kept low since an appreciable electrical heating by the indicating circuit current will produce a false result. Similarly, those types which are designed to be heated electrically (e.g. A and B) are not, in general, suitable for applications where they may be required to sense variations of temperature.

GENERAL GUIDE TO APPLICATIONS

Application	* Preferred types	Alternative types
Temperature measurement and control Temperature compensation	D, F, FS, G, GL, GT, P, U	KR, KT, KU
Gas and liquid flow measurements	G, GL, GT, KR, KT, KU D, F, FS, P, U	KB GT, GL
Katharometry, anemometry Low frequency power measurement	D, F, FS, P, U A, AT, B, E, L, R	GT, KR, KU, U
Power measurement up to and including 'X' band	Ε	U
Surface temperature measurement Amplitude and gain control	М, КВ А, АТ, В, Е, L, R	U GT
Surge suppression	C, CZ, CZA (Brimistors)	

* See subsequent pages for details

GRAPHS ON ANY TYPE AVAILABLE ON REQUEST.

Standard Telephones and Cables Pty. Limited

Туре	Description	Standard physical variations
A AT B C CZ & VZA D E F	Bead in gas-filled glass envelope As type A but mounted in cartridge-type fuse holder Indirectly heated bead in evacuated glass envelope Rod type thermistor (Brimistor) without connecting wires Rod types (Brimistors) with connecting wires Bead in end of glass probe Bead in gas-filled envelope Bead sealed in 'pip' at end of glass probe Bead in end of glass probe	– – – – – – – Two lengths of probe
G GL GT KB KR KT	Bead in solid glass pellet Bead in solid glass pellet As type G but mounted and potted inside nickel-plated case Disc mounted on metal plate (KBS Stud Type) Painted disc with radial lead wires Unpainted disc with radial lead wires	Three diameters of pellet — Two sizes of case — — —
KU L M P R U	Unpainted disc without leads Indirectly heated bead in gas-filled glass envelope Glazed bead mounted on nickel-iron alloy disc Glazed bead suspended beyond end of glass probe Bead in evacuated glass envelope Unmounted glazed bead with platinum-ruthenium alloy leads	– – – – Single or double- ended lead

Matched pairs of thermistors

Thermistors are available to order in matched pairs of the following types: D, F, FS, G, M, P and U.

The resistance of each resistor is matched to within 1% at 20°C, both thermistors being within the ±20% tolerance of nominal resistance.

Key to Symbols

- R_0 = Resistance at 0°C k R_{20} = Resistance at 20°C R_{25} = Resistance at $25^{\circ}C$ $R_{50} = \text{Resistance at } 50^{\circ}\text{C}$ $R_{100} = Resistance at 100^{\circ}C$ TΑ R_{min} = Min. operating resistance ΤB
- DIRECTLY HEATED BEAD TYPES

Types A and AT

- Type A: Bead in glass envelope for amplitude control and timing devices. Type AT: As type A but mounted inside
- cartridge-type fuseholder. Suffix B: $k = 0.28 \text{ mW/}^{\circ}\text{C}$

Suffix C: $k = 0.77 \text{ mW/}^{\circ}\text{C}$

 $T_A max = 150^{\circ}C$

 $P_{max} = 60 \text{ mW} \text{ at } 20^{\circ} \text{C}$

- $P_{max} = 200 \text{ mW} \text{ at } 20^{\circ} \text{C}$
 - $T_{B.max} = 220^{\circ}C$

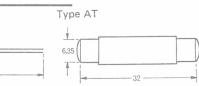
- = Dissipation constant
- P_{max} = Max. continuous power dissipation

25/

- I_{max} = Max. operating current
- I рк = Max. instantaneous current
 - = Ambient temperature

Туре А

= Bead or disc temperature

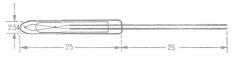

Dimensions in mm

Characteristic temperature (°K) defined = by the equation

$$R_{\mathsf{T}} = R_{\infty} e^{\binom{\mathsf{B}}{\mathsf{T}}}$$
 where R_{T} is the resistance at $T(^{\circ}\mathsf{K})$

$$\therefore B = \frac{T_1 \times T_2}{\Delta T} \log_e \frac{R_{T_1}}{R_{T_2}}$$

where R_{T_1} and R_{T_2} are resistances at specified temperatures T_1 and T_2 (°K)


Code	R ₂₀	R ₂₅	R _{min}	В
A55B and C and AT55B and C	500 k Ω	390 k Ω	950Ω	4,350
A25B and C and AT25B and C	200 k Ω	160 k Ω	510Ω	4,150
A25PO * and AT25PO *	200 k Ω	160 k Ω	510Ω	4,150
A15B and C and AT15B and C	100 k Ω	79.5 kΩ	320Ω	4,000
A54B and C and AT54B and C	50 k Ω	40.5 k Ω	210Ω	3,800
A24B and C and AT24B and C	20 k Ω	16.5 kΩ	110Ω	3,600
A14B and C and AT14B and C	10 k Ω	8.25 kΩ	75Ω	3,400
A53B and C and AT53B and C	$5 k\Omega$	4.15 kΩ	46Ω	3,250
A23B and C and AT23B and C	$2 k\Omega$	$1.7 \ \mathrm{k} \Omega$	25Ω	3,050
A13B and C and AT13B and C	1 kΩ	850Ω	15Ω	2,900
A52B and C and AT52B and C	500Ω	430Ω	12Ω	2,700

В

As A25B and AT25B but selected for close tolerance thermal time constant

Type D

Bead inside glass probe for temperature measurement and control; flow measurement.


Type E

Bead in glass envelope for power measurements at 'X' band frequencies.

Type F

Bead in glass probe for temperature measurement and control; flow measurement.

k =	0 85	mW/°C
K -	0.00	MVV/ C

 $T_{Amax} = 300^{\circ}C$

P_{max} = 100 mW to 200 mW (depending on external medium)

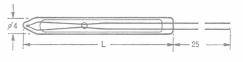
 $k = 0.85 \text{ mW/}^{\circ}\text{C}$

 $k = 1.3 \text{ mW/}^{\circ}\text{C}$

 $T_{Amax} = 300^{\circ}C$

$$k = 0.125 \text{ mW/}^{\circ}\text{C}$$
$$T_{\text{Amax}} = 175^{\circ}\text{C}$$
$$P_{\text{max}} = 25 \text{ mW at } 20^{\circ}\text{C}$$
$$T_{\text{Bmax}} = 220^{\circ}\text{C}$$

Code	R ₂₀	R ₂₅	R _{min}	В
D23	$2 k\Omega$	1.7 kΩ	13 Ω	3,050


Code	R ₂₀	R 25	R _{min}	В
E23	2.3 kΩ	$2 k\Omega$	40 Ω	2,950

P_{max} = 100 mW to 200 mW (depending on external medium)

$T_{Amax} = 300$	°C	T _{Bmax} =	300°C	lium)
Code	R ₂₀	R ₂₅	R _{min}	В
F15D	100 k Ω	7 9.5 kΩ	130 Ω	4,000
F14D	10 k Ω	8. 25 kΩ	35 Ω	3,400
F53D	5 k Ω	$4.15~\mathrm{k}\Omega$	22Ω	3,250
F23D	2 k Ω	1.7 kΩ	13Ω	3,050
F22D	200 Ω	175 Ω	3Ω	2,500

Type FS

Bead inside glass probe for temperature measurement and control; flow measurement.

P _{max} = 100 mW to 200 mW (depending on external medium)			Suffix B : L	= 25.4 mm
$T_{Bmax} = 300^{\circ}C$			Suffix D : L	. = 76.2 mm
Code	R ₂₀	R ₂₅	R _{min}	В
FS15B and D FS23B and D FS22B and D	100 k Ω 2 k Ω 200 Ω	79.5 kΩ 1.7 kΩ 175 Ω	130 Ω 13 Ω 3 Ω	4,000 3,050 2,500

Type G

Bead in solid glass pellet for temperature measurement, control and compensation.

High resistance types $T_{Amax} = 300^{\circ}C$ $T_{Bmax} = 300^{\circ}C$ $P_{max} at 20^{\circ}C = 420 \text{ mW (B)}$ 370 mW (C)310 mW (D)

Medium resistanc T _{Amax} = 155° C P _{max} at 20°C =	e types T _{Bmax} = 200 °C 270 mW (B) 235 mW (C) 200 mW (D)

Low resistance ty	/pes
$T_{Amax} = 125^{\circ}C$ P_{max} at 20°C =	T _{Bmax} = 125°C
P_{max} at 20°C =	160 mW (B)
	140 mW (C)
	120 mW (D)

$\phi d = 4.0 \text{mm}$
$\phi d = 3.0 \text{ mm}$
$\phi d = 2.5 \text{ mm}$

Code	R ₂₀	R ₁₀₀	R _{min}	В
G26B, C and D	2 Μ Ω	60 kΩ	300 Ω	5,000
G16B, C and D	900 k Ω	30 kΩ	170 Ω	4,850
G55B, C and D	500 kΩ	15 kΩ	100 Ω	4,700
Code	R ₂₀	R ₂₅	R _{min}	В
G25B, C and D	200 k Ω	155 kΩ	700 Ω	4,250
G15B, C and D	100 k Ω	79.5 kΩ	420 Ω	4,050
G54B, C and D	50 k Ω	40 kΩ	290 Ω	3,900
G24B, C and D	20 k Ω	16 kΩ	150 Ω	3,700
G14B, C and D	10 k Ω	8.2 kΩ	100 Ω	3,500
Code	R ₂₀	R ₂₅	R _{min}	В
G53B, C and D	5 kΩ	4.15 kΩ	210 Ω	3,350
G23B, C and D	2 kΩ	1.65 kΩ	115 Ω	3,200
G13B, C and D	1 kΩ	845 Ω	70 Ω	2,950
G52B, C and D	500 Ω	425 Ω	38 Ω	2,800
G22B, C and D	200 Ω	170 Ω	18 Ω	2,600

Type GL

Bead in solid glass pellet for temperature measurement and control, flow measurement and liquid level detection.

High resistance types	Code	R ₂₀	Ř ₁₀₀	R _{min.}	В
$P_{max} = 340 \text{ mW at } 20^{\circ}\text{C}$ $T_{A max} = 300^{\circ}\text{C}$ $T_{B max} = 300^{\circ}\text{C}$	GL26 GL16 GL55	2 ΜΩ 1 ΜΩ 500 k Ω	60 k Ω 30 k Ω 15 k Ω	300 Ω 170 Ω 100 Ω	5,000 4,850 4,750
Medium resistance types	Code	R ₂₀	R ₂₅	R _{min}	В
$P_{max} = 220 \text{ mW} \text{ at } 20^{\circ}\text{C}$ $T_{A max} = 155^{\circ}\text{C}$ $T_{B max} = 200^{\circ}\text{C}$	GL25 GL15 GL54 GL24 GL14	200 kΩ 100 kΩ 50 kΩ 20 kΩ 10 kΩ	155 kΩ 79.5 kΩ 40 kΩ 16 kΩ 8.2 kΩ	700 Ω 420 Ω 290 Ω 150 Ω 100 Ω	4,250 4,050 3,900 3,700 3,500
Low resistance types	Code	R ₂₀	R ₂₅	R _{min}	В
$P_{max} = 130 \text{ mW} \text{ at } 20^{\circ}\text{C}$ $T_{A max} = 125^{\circ}\text{C}$ $T_{B max} = 125^{\circ}\text{C}$	GL53 GL23 GL13 GL52 GL22	5 k Ω 2 k Ω 1 kΩ 500 Ω 200 Ω	4.15 kΩ 1.65 kΩ 845 Ω 425 Ω 170 Ω	210 Ω 115 Ω 70 Ω 38 Ω 18 Ω	3,350 3,200 2,950 2,800 2,600

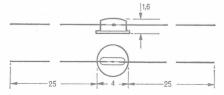
Type GT

Bead in solid glass pellet mounted in a metal can for temperature measurement, control and compensation.

Suffix B: Machine nickel plated brass can $L = 19.1 \text{ mm}, \phi d = 6.35 \text{ mm}$

Suffix C: Pressed nickel plated copper can $L = 14 \text{ mm}, \phi d = 4.35 \text{ mm}$ $k = 3.2 \text{ mW/}^{\circ}\text{C}$

 $T_{A \max} = 125^{\circ}C$ $P_{\max} = 300 \text{ mW at } 20^{\circ}C$ $T_{B \max} = 125^{\circ}C$


R ₂₀	R ₂₅	R _{min}	В
200 k Ω	155 k Ω	3,700Ω	4,250
100 k Ω	79.5 kΩ	2,200Ω	4,050
50 k Ω	40 k Ω	1,400 Ω	3,900
20 kΩ	16 k Ω	650 Ω	3,700
$10 \mathrm{k}\Omega$	8.2 kΩ	400 Ω	3,500
5kΩ	$4.15~\mathrm{k}\Omega$	210Ω	3,350
2 kΩ	1.65 k Ω	115Ω	3,200
1kΩ	845 Ω	70Ω	2,950
500 Ω	425 Ω	38 Ω	2,800
200 Ω	170 Ω	18Ω	2,600
	200 k Ω 100 k Ω 50 k Ω 20 k Ω 10 k Ω 5 k Ω 2 k Ω 1 k Ω 500 Ω	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

High resistance types

Code	R ₂₀	R ₁₀₀	R _{min}	В
GT26B and C GT16B and C	2 M Ω 900 k Ω	60 kΩ 30 kΩ	20 kΩ 12 kΩ	4,800 4,650
GT55B and C	500 k Ω	15 kΩ	7.2 kΩ	4,500

Type M

Bead on metal disc for surface temperature measurement and control.

 $k = 1 \text{ mW/}^{\circ}\text{C}$ 5 mW/ $^{\circ}\text{C}$ on infinite heat sink P_{max} = 300 mW 1.5 W on infinite heat sink

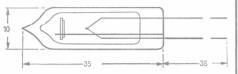
Code	R ₂₀	R ₂₅	R _{min}	В	Max. operating temperature
M15	100 kΩ	79.5 k Ω	120 Ω	4,050 Ω	300°C
M53	5 k Ω	4.15 kΩ	65Ω	3,350 Ω	200°C
M52	500 Ω	425 k Ω	65Ω	2,800 Ω	100°C

Thermistors – NTC Directly Heated Beads

Type P

Unencapsulated glazed bead on glass probe for katharometry, anemometry and other flow measurements.

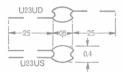
ļ	50	
6.5		•
T		,
	25	


Code	R ₂₀	R ₂₅	R _{min}	В
P25 P15 P23	200 kΩ 100 kΩ 2 kΩ	160 kΩ 80.5 kΩ 1.7 kΩ	1,600Ω 1,030Ω 60Ω	4,000 3,800 2,900
$k = 87 \ \mu W/^{\circ} C$			14 mW at 20°C	

 $T_{A max} = 180^{\circ}C$

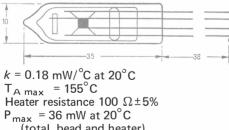
 $T_{B max} = 180^{\circ}C$

Type R


Bead sealed in glass envelope for operation at very low power levels, e.g. in transistor circuits

 $k = 16 \,\mu \text{W/}^{\circ} \text{C}$ $T_{A \max} = 175^{\circ}C$ $P_{\max} = 3 \text{ mW at } 20^{\circ}C$ $T_{B \max} = 220^{\circ}C$

Type U


Unmounted glazed bead

Indirectly Heated Bead Types

Type B

Bead sealed in glass envelope for amplitude gain control, power measurement and timing devices.

(total, bead and	heater)
$T_{B max} = 220^{\circ}C$	

Type L		
Bead sealed in glass envelope	for	tim-
ing circuits.		
Physical outline as Type B		
$k = 1.0 \text{ mW/}^{\circ}\text{C} \text{ at } 20^{\circ}\text{C}$		
$T_{A max} = 155^{\circ}C$		
Heater resistance $100 \Omega \pm 5\%$		
P_{max} = 200 mW at 20°C		
(total, bead and heater)		
$T_{B max} = 220^{\circ}C$		

	Code	R ₂₀	R ₂₅	R _{min}	В
-	R25	200 kΩ	160 kΩ	790 Ω	4,000
1	R15	100 kΩ	80.5 k Ω	520 Ω	3,800
	R54	50 k Ω	40.3 k Ω	270 Ω	3,650
	R24	20 k Ω	16.5 k Ω	150Ω	3,400
	R14	10 k Ω	8.3 kΩ	92 Ω	3,250
	R53	5kΩ	4.2 kΩ	63 Ω	3,100
i	R23	2 k Ω	1.7 kΩ	30 Ω	2,900
	R13	1 kΩ	860Ω	24 Ω	2,700
'	R52	500 Ω	430 Ω	13 Ω	2,550

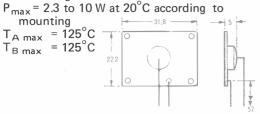
Code	R ₂₀	R ₂₅	R _{min}	В
U23UD U23US	2 k Ω 2 k Ω	1.7 k Ω 1.7 k Ω	60 Ω 60 Ω	2,900 2,900
Cuffin Dudan	امام متعامما	C	Cuainala andad	

Suffix D : double-ended $k = 87 \ \mu W/^{\circ} C$ $T_{A max} = 180^{\circ}C$

Suffix S: single ended $P_{max} = 14 \text{ mW} \text{ at } 20^{\circ}\text{C}$ $T_{B max} = 180^{\circ}\text{C}$

			×		
	Code	R ₂₀	R ₂₅	R _{min}	В
- t	B55	500 k Ω	390 k Ω	940 Ω	4,400
	B25	200 k Ω	160 k Ω	470 Ω	4,250
	B15	100 k Ω	79.5 kΩ	270 Ω	4,150
	B54	50 k Ω	40.5 kΩ	180 Ω	3,950
-	B24	20 k Ω	16.5 k Ω	95Ω	3,750
1	B14	10 k Ω	8.25 kΩ	64Ω	3,550
-	B53	$5 k \Omega$	4.15 kΩ	40 Ω	3,400
1	B23	$2 k \Omega$	1.7 k Ω	23 Ω	3,150
	B13	1kΩ	850 Ω	14.5 Ω	3,000
	B52	500Ω	530 Ω	10Ω	2,800

Code	R ₂₀	R ₂₅	R _{min}	В
-				
L55	500 k Ω	390 k Ω	940 Ω	4,400
L25	200 k Ω	160 k Ω	470 Ω	4,250
L15	100 k Ω	79.5 kΩ	270 Ω	4,150
L54	50 k Ω	40.5 kΩ	180 Ω	3,950
L24	20 k Ω	16.5 k Ω	95 Ω	3,750
L14	10 k Ω	8.25 kΩ	64 Ω	3,550
L53	5 k Ω	4.15 kΩ	40 Ω	3,400
L23	2 k Ω	1.7 kΩ	23 Ω	3,150
L13	1kΩ	850 Ω	14.5 Ω	3,000
L52	500 Ω	430 Ω	10Ω	2,800
	L55 L25 L15 L54 L24 L14 L53 L23 L13	L55 500 k Ω L25 200 k Ω L15 100 k Ω L54 50 k Ω L24 20 k Ω L14 10 k Ω L53 5 k Ω L23 2 k Ω L13 1 k Ω	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


NTC Disc and Rod Thermistors

DISC TYPES

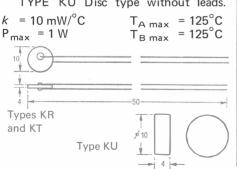
Type KB

Disc mounted on a metal plate for surface temperature measurement, temperature compensation and control.

k = 23 to 100 mW/°C according to mounting

Type KBS

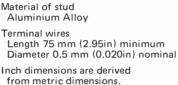
NTC disc thermistor encapsulated in the head of a threaded stud for mounting on surface of a metal plate for block. Good thermal contact is important when mounting the termistor.


Dimension	mm	in
A ±0.2 mm	9.9	0.39
B ±0.15 mm	4	0.158
C Maximum	12	0.47
D ±0.15 mm	10	0.394
E Nominal	4	0.16

Types KR, KT and KU

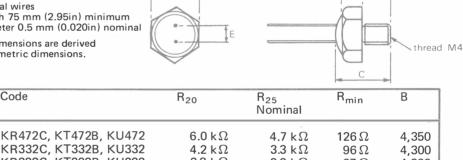
Unmounted discs for temperature measurement, control and compensation.

TYPE KR Standard disc type having radial leads, for industrial applications. (Supplied painted.)


TYPE KT Disc type having radial leads, for entertainment applications. (Supplied unpainted.)

TYPE KU Disc type without leads.

Code	R ₂₀	R ₂₅ Nominal	R _{min}	В
KB472	$6.0 \ k\Omega$	4.7 kΩ	126 Ω	4,350
KB222	2.8 k Ω	2.2 kΩ	67Ω	4,200
KB102	1.25 k Ω	1.0 k Ω	36 Ω	4,050
KB471	580 Ω	470 Ω	20 Ω	3,850
KB221	270 Ω	220 Ω	12 Ω	3,650
KB101	120 Ω	100Ω	6.2 Ω	3,450
KB470	56.5Ω	47 Ω	3.5 Ω	3,300
KB220	26Ω	22 Ω	2.0Ω	3,100
KB100	12Ω	10Ω	1.1Ω	2,900
KB047	5.5Ω	4.7 Ω	0.62Ω	2,700


Туре	Resistance at 25 [°] C (R25) nominal (Ω)	Resistance at 120°C (R120) nominal (Ω)	B value (25–85) [°] C nominal ([°] K)	Temperature Coefficient at 25°C approximately (%/deg C)
KBS 100	10	1.2	2,650	3.0
KBS 101	100	8.8	3,000	3.4
KBS 102	1,000	56.0	3,550	4.0
KBS 103	10,000	361.0	4,100	4.6

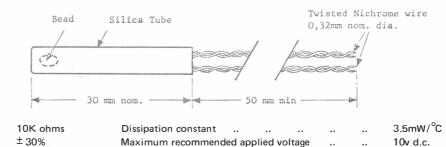
12500[°]K

±10%

Code

B

2v d.c.

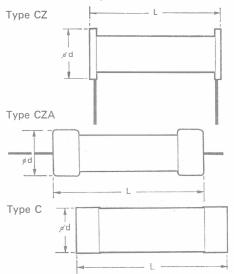

3s

4,350 KR332C, KT332B, KU332 4,300 KR222C, KT222B, KU222 2.8 kΩ 2.2 kΩ 4,200 67Ω KR152C, KT152B, KU152 1.9 kΩ $1.5 k\Omega$ 50 Ω 4,100 KR102C, KT102B, KU102 $1.25 \text{ k}\Omega$ $1.0 k\Omega$ 36Ω 3,050 KR681C, KT681B, KU681 850 Ω 680Ω 27Ω 3,950 KR471C, KT471B, KU471 **580**Ω **470**Ω **20**Ω 3,850 KR331C, KT331B, KU331 405 Ω **330**Ω 15Ω 3,750 KR221C, KT221B, KU221 **270**Ω 3,650 **220**Ω 12Ω KR151C, KT151B, KU151 **180**Ω **150**Ω 8.6Ω 3,550 3,450 KR 101C, KT101B, KU101 **120** Ω 100 Ω 6.2Ω KR680C, KT680B, KU680 81.5 Ω 3,400 68Ω 4.6 Ω KR470C, KT470B, KU470 **56.5**Ω 47 Ω 3.5Ω 3,300 KR330C, KT330B, KU330 **39.5**Ω 33Ω 2.6Ω 3,200 KR220C, KT220B, KU220 26Ω 22Ω 2.0Ω 3,100 KR150C, KT150B, KU150 18Ω 15Ω 1.5Ω 3,000 KR100C, KT100B, KU100 12Ω 10Ω 1.1Ω 2,900 KR068C, KT068B, KU068 Ω **6.8**Ω 0.83 Ω 2,800 KR047C, KT047B, KU047 5.5Ω 4.7 Ω 0.62 Ω 2,700

Type H

The HT 103/750 is a newly developed thermistor primarily intended for temperature measurement and control at high temperatures. The operating range is 500°C to 1,000°C and the typical temperature coefficient of resistance at 750°C is -1%/°C. **Characteristics**

Resistance at 750°C (2v applied)		
Resistance tolerance at 750°C		
B value (750°C to 1,000°C - 2v applied)		
Tolerance on B value	22	



Minimum recommended applied voltage

Time constant

Brimistors NTC

Rod type thermistors of broad resistance tolerance, primarily for surge suppression and compensation for resistance variation in associated components.

Туре	R ₀ (Ω)	R ₂₀ (Ω)	R ₅₀ (Ω)	R _{min} (Ω)	I _{max} † (A)	I _{pk} ‡ (A)	L (mm)	ø d (mm)
CZ1 CZ1A	8,300	3,800	1,400	44	0.3	0.6	32	8.0
CZ2	12,500	5,500	1,850	38	0.3	0.4	22	6.0
CZ3	3,500	1,500	560	35	0.2	0.3	8.0	5.0
CZ4								
C4	1,700	800	320	5.5	0.8	1.2	38	11
CZ4A								
CZ6	6,000	3,000	1,120	27	0.45	0.7	32	10
CZ8A	3,700	1,600	620	30	0.3	0.6	16	8.0
CZ9A	800	350	130	3.7	0.6	1.0	16	8.0
CZ10	26,000	11,000	4,000	148	0.075	0.15	8.0	2.4
CZ11	280	140	65	2.5	1.5	2.5	32	10
CZ12	240	120	53	1.5	2.5	4.0	38	11
CZ13A	950	450	180	6.0	0.8	1.2	19	11
CZ25	200	100	44	2.0	1.5	2.5	22	10

 *T_A = 20°C. At higher ambients, R_{\min} will be somewhat lower. † At $T_A < 50^{\circ}C$ ‡ Duration < 20 ms

See Back Page for some Brimistor Applications.

Resistance (±20%)

at $25^{\circ}C(\Omega)$

Thermistors – Positive Temperature Coefficient

Silistors

Silistors are thermally sensitive silicon resistors having a positive temperature coefficient of resistance.

Applications

Temperature measurement, control and compensation, and voltage stabilisation.

Characteristics

- Temperature coefficient at 25°C 0.77%/°C
- Operating temperature range
- $-60^{\circ}C$ to + 150°C
- Maximum power dissipation up to 35°C 1.5 W
- Dissipation constant

11 mW/°C

Positte Thermistors

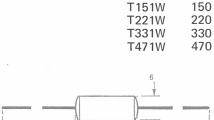
Applications

Temperature control^{*} and compensation. Measurement of liquid or gas flow, pressure and thermal resistance.

Sensing of liquid levels.

* Primary application is detecting excessive temperatures inside industrial equipment, especially within windings of electro-magnetic equipment. By monitoring hot spots, maximum output can be taken from the machine instead of allowing excessive temperature safety margins, and is particularly useful in irregular stopstart operation. The principle equally applies to boilers, bearings, etc.

The law governing the variation of resistance with temperature is approximately:


$$R = R_{25} \frac{T}{298} = \frac{2}{3} \text{ where } T = \frac{Temperature}{(^{\circ}K)}.$$

Departure of the order of 5% from this law may occur at temperatures above 140° C.

The law governing the variation of resistance with power dissipation is approximately:

R = Rz (1 + 0.7 P)

P = Power (W) dissipated in the silistor

T100W

T150W

T220W

T330W

T470W

T680W

T101W

10

15

22

33

47

68

100

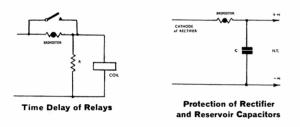
PREFERRED RANGE

			Lead Wires		
Code	C ℃	Disc Size (max) mm	Length (nom) mm	Colour *	
YC080TA	80	5	200	White — white	
YC090TD	90	3	130	Green – green	
YC095TC	95	5	130	Green – red	
YC100TA	100	5	200	Red – red	
YC110TB	119	3	200	Brown – brown	
YC120TC	120	5	130	Grey — grey	
YC130TA	130	5	200	Blue – blue	
YC130TB	130	3	200	Blue – blue	
YC140TA	140	5	200	Blue – black	
YC155TA	155	5	200	Black – black	
YG130TB	130	3	200	Blue – blue	

* The different temperatures are distinguished by coloured leads.

FOR FULL INFORMATION ON POSITTE ASK FOR CDD6 DATA SHEET

silistor

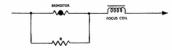

Brimistors are broad tolerance rod-type thermistors, which are particularly suitable for surge suppression and resistance variation compensation of other components in radio, television, telecommunication and projection equipment. The resistance of a Brimistor decreases with rising temperature, and so does its temperature coefficient. Thus a rise of about 20° C above room temperature will halve its resistance, but at 250° C an increase of 50° C is necessary to halve the resistance value.

Thermal Characteristics

The rate of heating and consequent change of resistance of a Brimistor depends upon its mass, how it is mounted, and the circuit conditions in which it is employed; and the rate of cooling upon its mass and the difference between operating and ambient temperatures. To choose the most suitable type of Brimistor for a specific application, consider the characteristics and ratings of the various types.

Time Delay of Relay

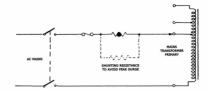
A large range of time delays can be obtained by suitable selection of Brimistor and shunt. The circuit must be so arranged that E_{max} is exceeded at switch-on, resulting in self-heating. Delay time increases with the size of shunt resistance, and further with the use of a series resistance. For small tolerance in delay time, the Brimistor should operate at high temperature, to reduce the effect of ambient variations. Short circuiting the Brimistor when the relay closes allows it to cool and permits a fresh delay immediately after the relay reopens.


Protection of Rectifiers and Reservoir Capacitors

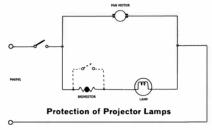
The large switch-on current surge obtained with the large reservoir capacitors of capacitor input filters may be reduced by connecting a Brimistor between the rectifier cathode and the HT + side of the reservoir capacitor. The circuit shown is equally suitable for silicon of thermionic rectifiers.

Recommended types are:

Direct Current up to 75mA	-CZ10
Direct Current up to 100mA	-CZ1 or CA1A
Direct Current of 100 to 100mA	-CZ6
Direct Current over 200mA	-CZ4


Compensation for Increase in Resistance of Focus Coils

Compensation for Increase in Resistance of Focus Coils


The increase of resistance of a focus coil, owing to its temperature rise while operating, may be compensated by connecting a Brimistor in series with and in close proximity to the coil. For exact compensation. a shunt resistance also may be needed. According to the current involved, Brimistor types CZ2 or CZ3 are normally suitable.

Protection from Switch-on Surges in Mains Transformers

Protection from Switch-on Surges in Mains Transformers

By using a Brimistor to limit the switch-on surge in the primary of mains transformers of TV and radio receivers, the rating of the fuse or other protective device in the primary circuit may be reduced, thus giving more efficient protection against overload from component breakdown. Type CZ9A is suitable but may require a shunting resistance to avoid peak surge current exceeding the Brimistor rating. A shunt of 200Ω , $\frac{1}{2}$ to 1W should be suitable

Protection of Projector Lamps.

For this purpose special Brimistors have been developed with resistance and mass chosen to give adequate surge suppression with negligible loss of light. Delay to full illumination is about 1/10 to ¼ sec. which represents satisfactory surge suppression.

If the projector has a fan it is preferable but not essential to connect the Brimistor in series with the lamp only.

For recurrent operation the Brimistor must be allowed to cool before reswitching on. Some surge suppression is achieved if cooling is incomplete but for maximum protection the full cooling time indicated in the table is required. The use of a short-circuiting switch, after the lamp is lit, allows the Brimistor to cool while the projector is running.

Lamp Wattage	Supply Voltage	Cooling Time	Brimistor
500W	200-250V	12 Mins.	CZ12
300 or 250W	200-250V	10 Mins.	CZ11
150W	200-250V	6 Mins.	CZ9A
250W	105-125V	12 Mins.	CZ12
150W	105-125V	10 Mins.	CZ11
75 or 50W	105-125V	6 Mins.	CZ9A

CDD34-6-71

Standard Telephones and Cables Pty. Limited Branches and Distributors:

Sydney: Moorebank Avenue, Liverpool. 2170, Telephone: 602-0333. Sydney: Geo. Brown & Co. Pty. Ltd., Cnr. Sussex & Druitt Streets, Sydney. 2000 Telephone: 29-7031 Melbourne: 314 St. Georges Road, Thornbury. 3071. Telephone 480-1255 Canberra: 90 Wentworth Avenue, Kingston. 2604. Telephone: 95-9883. Western Australia: M.J. Bateman Pty. Ltd., 926 Hay Street, Perth. 6000. Telephone: 21-6461. South Australia: Unbehaun & Johnstone, Pty. Ltd. 51 North Terrace

South Australia: Unbehaun & Johnstone Pty. Ltd., 51 North Terrace, West Adelaide. 5000 Telephone. 51-3731 Tasmania: W. & G. Genders Pty. Ltd., Launceston, Hobart, Burnie, Devenport. Telephone: 31-2511

Queensland: Fred Hoe & Sons Pty. Ltd., 246 Evans Road, Salisbury North, Brisbane 4107 Telephone. 47.4311

Wollongong: M.E.S. Pty. Ltd., Components Division, 119 Auburn Road, Wollongong 2500 Tel 29-9377 Newcastle: Hunter Engineering Sales Pty. Ltd., 65 Broadmeadow Road, Broadmeadow 2292 Tel. 61-4321

New Zealand: Upper Hutt: Standard Telephones & Cables (New Zealand) Ltd., P.O. Box 40140

Auckland: C R. Peoples, P.O Box 10097, Balmoral, Auckland 4 Telephone: 69 4476