step-by-step programming procedure

- 1. Apply steady-state supply voltage (V_{CC} = 5 V) and address the word to be programmed.
- 2. Verify that the bit location needs to be programmed. If not, proceed to the next bit.
- 3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to the chip-select input(s).
- 4. Only one bit location is programmed at a time. Connect each output not being programmed to 5 V through 3.9 kΩ and apply the voltage specified in the table to the output to be programmed. Maximum current out of the programming output supply during programming is 150 mA.
- 5. Step VCC to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- 6. Apply a low-logic-level voltage to the chip-select input(s). This should occur between 10 μs and 1 ms after V_{CC} has reached its 10.5-V level. See programming sequence of Figure 2.
- 7. After the X pulse time (1 ms) is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
- 8. Within 10 μ s to 1 ms after the chip-select input(s) reach a high logic level, V_{CC} should be stepped down to 5 V at which level verification can be accomplished.
- The chip-select input(s) may be taken to a low logic level (to permit program verification) 10 μs or more after VCC reaches its steady-state value of 5 V.
- 10. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 8 for each output where it is desired to program a bit.

NOTE: Only one programming attempt per bit is recommended.

LOAD CIRCUIT FOR EACH OUTPUT NOT BEING PROGRAMMED OR FOR PROGRAM VERIFICATION FIGURE 1

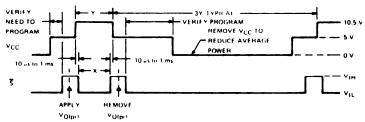


FIGURE 2-VOLTAGE WAVEFORMS FOR PROGRAMMING

