
1

Orton Z80 computer manual

Index

Chapter 1 Hardware... 2
Chapter 2 Software .. 7

Disclaimer

The information in this document is provided purely as a record of the construction of one of my
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths,

injuries or losses resulting from the use of the information contained in this document. I have no
claims to most of the technology used in my projects or described in this document, indeed, it must be

assumed that I have used much copyrighted and/or patented material. But since I do what I do for
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking
the law. It is up to the individual using the information in this document to determine whether, and to
ensure that, their use of the information I provide is both legal and safe. This is supposed to be fun.

Karen Orton 2018

2

Chapter 1 Hardware

The Orton Z80 computer is minimalist in design, comprising of just three ICs: a
74HC04 hex inverter, a 4MHz Z80, and a 32kByte static RAM (SRAM) IC. The
design follows earliest practise of requiring initial program entry through switches on
the front panel of the machine. The program so entered may be a simple training
program or a bootstrap loader for installation of a larger program.

The SRAM appears twice in the Z80 memory map, one image residing between
0000H and 7FFFH, while a second image resides between 8000H and 0FFFFH.
There is nothing mapped into the Z80 I/O space. The computer has two modes
depending on the state of the 'Run' switch (see circuit diagram). The front panel
controls are as follows (see photos):

Control Purpose
Address LEDs Indicate the state of the lower half of the Z80

Address Bus
Data LEDs Indicate the state of the Z80 Data Bus
Power switch Turns the computer on/off
Power LED Indicates power state
'Halt' LED Indicates that the Z80 has executed a HALT

instruction and has stopped
'Run' switch In the up position, the Z80 is held in a wait state

while the memory is edited ('program mode')
In down position, the Z80 executes instructions in
memory at full speed ('run mode')

'Cycle' button This button generates a 'cycle' - a cleanly generated
pulse for performing one of three actions depending
on the states of the 'Reset' and 'Write' switches

'Reset' switch When this switch is in the down position, pressing
the 'cycle' button will issue a reset to the Z80
This causes the Address LEDs to go to the 'all zero'
state thereby allowing program entry from location
0000H (note that, following power up, it may be
necessary to issue two reset cycles to extinguish all
Address LEDs)

'Write' switch (Provided the 'Reset' switch is in the up position)
In the up position, pressing the 'cycle' button will
cause the Address LEDs to increment
In the down position, pressing the 'cycle' button will
cause the data entered on the Data switches to be
written to the memory location at the address
indicated on the Address LEDs

Data switches Allows entry of data for writing to memory

3

Note that the issuing of a cycle while the Z80 is running will have unpredictable
results. The single exception is changing the state of the 'Run' switch, which is best
done while a performing a reset cycle. The procedure for changing the state of the
'Run' switch is as follows:

1. The 'Reset' switch is moved to the down position
2. The 'Cycle' button is held down
3. The 'Run' switch is changed
4. The 'Cycle' button is released

When moving from program mode to run mode, the reset cycle ensures that the Z80
begins execution from location 0000H. Programs must therefore be entered from this
address. When moving from run mode to program mode, the reset cycle ensures
that program entry begins from location 0000H. Note that moving from run mode to
program mode should only be done while the Z80 is in a halted state. For this
reason, training programs should execute a HALT instruction on completion.
Switching from run mode to program mode while the Z80 is executing instructions
may lead to memory corruption.

The serial port is implemented by very obscure means. The serial receive line is
connected via a transistor isolator to the Z80 /INT pin. A software UART samples the
state of the serial receive line by momentarily enabling interrupts and seeing whether
an interrupt occurs. The serial transmit line is connected via a transistor isolator to
Z80 address line A15. A software UART controls the serial transmit line by shifting
Z80 execution between the two images of the SRAM. The inactive state of the serial
transmit line (the high state) corresponds to execution in the lower image (0000H to
7FFFH).

Only the lower eight Z80 address lines are indicated on LEDs, as it is unlikely that
anyone will have the patience to enter programs larger than 256 bytes. Larger
programs can still be entered but the user must keep track of the high order address
lines manually. The LEDs used are high efficiency white types that were salvaged
from portable illuminators of the sort one hangs in cupboards. The LED drive current
is very low (around 100uA) and puts a minimal load on the Z80/SRAM address and
data lines. No buffer ICs are therefore necessary for driving the LEDs. Even at this
miniscule drive current, the LEDs in question are still dazzlingly bright when viewed
straight on.

Address generation during program entry relies on the Z80, which is deceived into
thinking that it is executing NOPs. While the Z80 is completing an instruction fetch,
the data bus is pulled to the low state via-pull down resistors thereby presenting a
NOP opcode. The Z80 (well, my Z80 at least) tolerates this high impedance on the
data bus provided a small capacitor is added to data line D4 to prevent crosstalk
from the adjacent CLK pin. Address increment during program entry is accomplished
using a handshake circuit which interacts with the Z80 /WAIT and /RFSH signals.
The Z80 remains in an instruction fetch wait state until an increment cycle is issued,
upon which the Z80 is permitted to fetch one (NOP) instruction and move on to the
next.

4

Serial connection to a PC is achieved using FTDI lead type TTL-232R-5V-AJ. This
lead terminates in a 3.5mm stereo jack bearing 5V TTL serial signals. A terminal
emulation program should be run on the PC using the settings 9600 baud, 8 data
bits, no parity, one stop bit and no handshaking.

5

74HC04

a b

e f

c

d

1M
1k 4MHz

22p 22p

Cycle
(button)

Write Reset

BAT43

Run
47p

10p

100n

100n

100n

100p

3k3

3k3

3k3

22k

22k

Halt

Power

All 22k

All 22k

Data
LEDs

Address
LEDs

Unmarked diodes are 1N4148

Data
switches

A14
A13
A12
A11

TTL/CMOS
serial I/O

+5V

GND

A10
A9
A8
A7

D7
D6
D5
D4
D3
D2
D1
D0

A6
A5
A4
A3
A2
A1
A0

A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

D7
D6
D5
D4
D3
D2
D1
D0

CLK

/RFSH

/BUSRQ
/NMI

/WAIT

/WR
/RESET
/RD

/HALT

A15
/INT

/MREQ
/IORQ

/M1
/BUSAK

GND

+5V

/OE
/CE
/WE

4
3
2
1

40
39
38
37
36
35
34
33
32
31
30
19
20
27
23
13
10
9
7
8

1
26
2

23
21
24
25
3
4
5
6
7
8
9

10

12
15
14

6

28

19
18
17
16
15
13
12
11
22
20
27

25
17

22
26
21

11

18

5
16

29

24

28

14

Z80

3k3

3k3

2N7000

BC182L

14

7

1 2 3 4

11 10 13 12

6 5

9 8

32k SRAM

5V Power
Power

100µ
+

© Copyright Karen Orton 2017 all rights reserved

Unmarked resistors are 10k

The seasons don't fear the reaper

LEDs are absurdly efficient white LEDs

All 4k7

1k

22k

1k5

Orton Z80 computer circuit diagram

6

Photos of Orton Z80 computer

7

Chapter 2 Software

So far, the only software written for the Orton Z80 computer is a simple 'echo'
program to verify correct operation of the serial port. The program - echo.asm -
receives characters at 9600 baud, no parity, one stop bit, and then retransmits them
using the same format and baud rate. It is intended that this will form the basis of a
future driver/loader for MS Basic. echo.asm was assembled using the 'TASM'
assembler.

