
1

Orton SC/MP computer manual

Index

Chapter 1 PIC-based terminal.. 2
Chapter 2 PIC SC/MP Computer with National's Industrial BASIC Language (NIBL
BASIC) ... 8
Chapter 3 Hardware... 15
Chapter 4 Software .. 18

Disclaimer

The information in this document is provided purely as a record of the construction of one of my
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths,

injuries or losses resulting from the use of the information contained in this document. I have no
claims to most of the technology used in my projects or described in this document, indeed, it must be

assumed that I have used much copyrighted and/or patented material. But since I do what I do for
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking
the law. It is up to the individual using the information in this document to determine whether, and to
ensure that, their use of the information I provide is both legal and safe. This is supposed to be fun.

Karen Orton 2018

2

Chapter 1 PIC-based terminal

Introduction

My interests in early microcomputers are skewed towards the very earliest 8 bit era
when use of an ASR 33 teletype was not uncommon. The microcomputers of that
time (e.g. the Altair 8800) had no backup storage whatsoever and storage to
cassette tape was still in its infancy. When using said teletypes, it was usual to fall
back on these machines' paper tape punch and reader as a means of program
storage and retrieval. In that respect, I suspect it is no coincidence that when you
LIST a BASIC program, the format in which it is printed is compatible with typed
entry. This means that you can capture a LISTing to paper tape, and then replay it to
the computer at a later date using the paper tape reader, at which time the
computer's 'perception' is that you are typing the program very quickly.

There is a downside to this trick however - BASIC interpreters need time to load
completed lines into memory following each received carriage return (CR) character,
and while we don't notice a pause when typing normally, the speed of paper tape
input could potentially result in characters being lost while the interpreter is
processing each line. But since ASR 33 teletypes work at only ten characters per
second such loss was rare.

In honour of those pioneering times I have made a PIC-based terminal that
simultaneously scans an ASCII keyboard and generates a text display. The PIC is
directly interfaced to a host microprocessor unit (MPU) using the PIC's Parallel Slave
Port (PSP) thereby replacing the usual UART. In line with teletype practice, the
terminal has local echo. In addition to basic terminal functions, the PIC firmware
includes a 100 character per second cassette interface that uses FSK modulation for
high reliability.

The cassette port serves the function of the paper tape punch and reader: All
characters delivered to the terminal from the host MPU are delivered to the cassette
port. Similarly, all characters demodulated on the cassette input are delivered to the
host. This arrangement provides the functional equivalent of a teletype's paper tape
facilities: pressing the cassette recorder's 'Record' key corresponds to activating the
teletype's hole punch, while pressing the 'Play' key corresponds to activating the
paper tape reader.

Keyboard

I decided to construct my own keyboard rather than use a standard USB item since
these require complex drivers. PS/2 keyboards, while much easier to drive, are
rather rare now. My keyboard was constructed using the plastic frame and
keys/plungers of a low cost purchased USB keyboard. The frame was cut down to
leave only the core keys, dispensing with the function keys, numeric pad, arrow
keys, etc. The frame was then mounted onto a piece of 6mm thick MDF board.

3

The 'fairy bowls' that provide hysteresis to the key travel were retained but the
membrane contact layer was replaced with 13mm tactile switches. I did this mainly
because I didn't want to be tied to the matrix provided on the membrane (in any case
it proved impossible to make reliable connection to the cut down membrane). Use of
tactile switches also allows easy repair of the keyboard, should any switch become
faulty. The result was a somewhat stiff but 'clicky' keyboard with a retro feel. The
membrane sheets, though ultimately discarded, provided a precise drilling guide for
the holes that admit the tactile switch plungers.

6mm MDF
boards

4mm
stripwood

spacer

Keytop

13mm tactile
switch

Soft rubber
dome

 (fairy bowl)

Plastic keyboard
frame

(cut from purchased
keyboard)

Display resolution

The terminal generates a monochrome 625 line, 50Hz non-interlaced video signal
bearing a character display of 16 lines of 25 characters. Each character is formed
from a grid of 8 wide by 14 high pixels. The terminal uses the standard ASCII
character set* and the font is a 'classic PC' font, which is very readable. Lower case
is supported with descenders. An extra 31 graphic characters are also supported.

* The exceptions are the ASCII DEL character (character 127), which has been
replaced with the British currency symbol '£'. Also, shift-tab is programmed to
generate character 1510.

Terminal operation

There are essentially three sources of characters within the terminal. They are
handled as follows:

Source Sent to host Sent to
screen

Sent to
Cassette

Keyboard Yes Yes Yes
Host No Yes Yes
Cassette Yes Yes No

Keyboard interface

The terminal scans an 8 by 7 matrix comprising of 52 keys, plus shift and control
keys. Two character roll-over is included, i.e. a second key stroke can be accepted
that begins before the previous key has been released.

4

Cassette interface

The cassette interface uses FSK encoding and records at 100 characters per
second. A '0' is recorded as a single cycle of a 900Hz tone while a '1' is recorded as
two cycles of an 1800Hz tone. Characters are recorded as nine bits: a zero start bit,
seven bits of ASCII character information (LSB first) followed by a single stop bit of
one. No parity is recorded.

The terminal has no buffering and so the cassette interface determines the rate of
character transfer between the terminal and the host. Due to day to day speed
variations or differences in playback speed between individual cassette recorders,
playback may sometimes exceed 100 characters per second. This may lead to
occasional playback characters being lost to the video display. However, the
cassette decoder itself has a wide speed tolerance and so it is assured that the host
will be in receipt of all characters.

The cassette interface is polarity sensitive. Since it cannot be predicted whether a
cassette recorder will return a signal with the same polarity as was delivered to it,
links are included to allow the replay polarity to be matched to that of the recorder.

Bell sounder

The terminal is able to respond to ASCII character 7 and trigger an audio bleep
circuit.

Escape sequences

Escape sequences allow access to some useful graphic characters and are encoded
as an Escape character (number 27) followed by one of the following characters:

Host communications protocol

Host communications use the PIC16F877 Parallel Slave Port (PSP). This port may
be interfaced to a microprocessor as a single byte location, with chip select (/CS),
read (/RD) and write (/WR) strobes being accepted by the PSP. Flow control is
implemented as follows.

Seven bit ASCII characters are sent by the terminal to the host as single bytes, the
most significant bit (MSB) of which is used as a sequence bit, i.e. it alternates as

5

each new character is presented. The host should therefore watch for a change in
the MSB of the read data (or indeed any change) to detect new characters. It is
recommended that each character is re-read on each such detection, just in case the
host noticed the change at the moment when the data lines of the read port were in
transition.

Seven bit ASCII characters are sent by the host to the terminal by simply writing
them to the PSP. When the terminal has accepted and processed each written
character, it will issue a low-going pulse on the /ACK line. The pulse duration is in
the range 60..130 microseconds. The MSB of written characters should always be
zero (there is one exception to this rule - see later).

It is recommended that the host employ a time-out of around 20 milliseconds on
acknowledgment, just in case an acknowledgement pulse goes unnoticed by the
host. Monitoring of the /ACK line is best done using a set/rest latch, a counter, or an
interrupt, as otherwise the host would have to waste time polling this signal.

The terminal program requires a short period to initialise following a power-on.
During this time the /ACK line is in a high impedance state. Once the terminal has
completed its initialisation this line will be asserted HIGH, indicating that the terminal
is ready to receive characters from the host. It is advised that the /ACK line is pulled
to the LOW state by a 10k resistor so that the host microprocessor can detect this
readiness.

A word of caution: A problem arises when the host changes direction from sending
characters to the terminal, to receiving characters from the terminal. For reasons
unknown, the last written character can be duplicated if a read is attempted before
the previous write has been acknowledged. For this reason, it is necessary to check
for acknowledgement before a character read is attempted.

Carriage return and line feed

On receipt of a Carriage Return character (number 13) the terminal starts a new line.
Line Feed characters (number 10) are ignored. The only other control characters that
the terminal responds to are Bell (number 7), Backspace (number 8) and Escape
(number 27).

Video output

The video output requires a 75R load in order to develop a standard 1Vp-p signal.
Most video monitors present this load but if there is evidence of excess signal, or if
the monitor struggles to lock to the signal, then an explicit load resistor may be
required. Note that some modern TVs cannot lock to non-interlaced analogue video.

6

Terminal communication flowcharts

Wait for terminal ready

Count = 255

/ACK high?
No Yes

Count = 255

Count = Count - 1

Count = 0?
No Yes

End

 Wait for terminal acknowledgement

Arm timer for 20msec

/ACK flag?
No Yes

Timeout?
No Yes

End

Read byte from terminal

Terminal /CS = low

End

Terminal /RD = low

Latch data

Terminal /RD = high

Terminal /CS = high

Read character from terminal

Wait for terminal acknowledgement

a = b?
No Yes

End

a = Read byte from terminal

b = Read byte from terminal

char = Read byte from terminal

Send character to terminal

Wait for terminal acknowledgement

Terminal /CS = low

End

Terminal /WR = low

Terminal /WR = high

Terminal /CS = high

Assert data

Float data

Clear /ACK flag

Cassette throttling

During replay from cassette, the host computer may need time to process each line
of text as it is received. To ensure that this time is available on playback, it may be
necessary to insert pauses during recording. This can be achieved by writing the
character code 0xFF to the PSP. This code will have no effect on the terminal
display but will ensure that a 10 millisecond pause is inserted into the data recorded

7

to cassette. Note that writing any other character to the PSP with the MSB set to '1'
will have unpredictable results.

8

Chapter 2 PIC SC/MP Computer with National's Indust rial
BASIC Language (NIBL BASIC)

Presented here is a host microprocessor system that makes use of the PIC-based
terminal. It uses a Microchip PIC emulation of the National SC/MP microprocessor,
running a fully expanded NIBL tiny BASIC (that is, the computer has 32kBytes of
memory).

Terminal case logic

NIBL expects upper case keywords and program statements. To avoid the need to
constantly hold down the shift key, a special version of the PIC terminal was built for
this computer where the shift key behaviour is reversed. The keyboard alpha keys
therefore default to upper case, while lower case is selected by holding down the
shift key. Although NIBL was designed to work in systems that only support upper
case, NIBL will allow lower case in text strings.

Serial port

The computer includes a serial port which is fixed for 1200 Baud, 8 data bits, no
parity and 1 stop bit. The port includes RTS/CTS bi-directional flow control (i.e. 'five
wire connection'). This port has several possible uses. Firstly, it can be used to
connect a printer. Secondly, it can be used to transfer programs to and from a
modern computer. Alternatively, the serial port can be used to control external
peripherals.

The SC/MP Status Register

The SC/MP microprocessor has an eight bit Status Register, five bits of which
provide access to user flags and sense inputs - physical digital I/O pins on the
microprocessor chip. NIBL provides access to the Status Register via the 'STAT'
pseudo-variable. In this implementation, the three user flags (F0, F1, and F2) along
with the interrupt enable bit (IE) and the two sense inputs (SA and SB) are used to
control the serial port. The Status Register is initialised to zero thus ensuring that the
serial port is disabled.

Bit 7 6 5 4 3 2 1 0
SC/MP SB SA IE F2 F1 F0

This
implem-
entation

CY/L OV
SIOVF SIMON NPAD SIEN CTSEN SOEN

9

Bit 3 of a real SC/MP status register is the SC/MP interrupt enable bit. NIBL does not
support interrupts and so this bit has been re-purposed.

Bit Description Comment

0 SOEN
When this bit is set, NIBL output is sent to the serial
port as well as to the terminal. This bit can be toggled
by typing Control-P.

1 CTSEN When this bit is set, flow control using CTS is enabled
for serial port output.

2 SIEN When this bit is set, NIBL input is sourced from the
serial port instead of the terminal.

3 NPAD

A delay is automatically added to the end of each text
line that is sent to the terminal. This delay is essential
when saving programs to cassette (it ensures that
NIBL is given sufficient time to process each text line
when a program is played back from cassette).
When this bit is set, this feature is TURNED OFF
thereby allowing faster output to the terminal.

4 SIMON

This bit is only relevant when the SIEN is set. At other
times this bit has no effect. When set, characters
received from the serial port are sent to the terminal
for monitoring purposes. Note that characters can be
received on the serial port somewhat faster than the
terminal can process them and so some characters
may not be displayed.

5 SIOVF

This bit is set when an 'RTS overrun' occurs. On
receipt of a Carriage Return on the serial port, the
computer negates RTS to instruct the attached device
to cease sending. Should the device continue to send
characters, and exceed the buffer space for RTS
overrun, then characters will be lost and this bit will be
set. Consequently, a '1' in this bit position indicates
that the attached device is taking no notice of RTS.
This bit does not clear itself automatically and so an
assignment to the NIBL 'STAT' pseudo-variable is
required to set this bit back to '0'.

The ability to redirect NIBL input and output to the serial port has several possible
uses:

10

Redirected to
serial port Printer Modern computer Device

NIBL input - Terminal emulator
BASIC program download

Use of INPUT to
receive readings

NIBL output
Hardcopy

Log of
session

Terminal emulator
BASIC program upload

Use of PRINT to
issue instructions

and to send
parameters

There are a couple of hazards to be aware of when enabling the serial port:

Firstly, enabling CTS flow control will lead to the system hanging up if the CTS line is
not driven properly or left floating. In this event, the Break key should be pushed.
This will clear SOEN thereby turning off serial port output. The computer will then
resume but sending output to the terminal only.

The other hazard is a BASIC program stopping for some reason and leaving the
source of NIBL input pointing at the serial port. In this event, pressing the Break key
will clear SIEN thereby switching NIBL input back to the terminal. The computer will
then resume but taking input from the terminal. Using the Break key to interrupt
program execution will also ensure that SIEN and NPAD are cleared.

Note that RTS flow control signals are always generated by the serial port, and may
be sensed by a connected device so that characters are not sent to the computer at
times when it is not attentive. NIBL is sufficiently fast that it can process the
characters within a text line without resort to flow control. It is only on receipt of a
Carriage Return that NIBL requires significant processing time.

RTS is negated following receipt of a Carriage Return character. The serial port will
then continue to accept characters (up to a limit of 64) until the connected device
ceases sending. This ensures that characters already in the sending device's
hardware buffer are not lost. Once NIBL has processed a text line (and any RTS
overrun characters) RTS is re-asserted so that the connected device can send more
characters.

Connecting the serial port to a modern computer

Both the SC/MP NIBL computer and a PC are 'DTE' devices and so must be
connected using a 'null modem' cable. This must use a five wire connection as
follows:

RxD

RTS

TxD

CTS

GND

RxD

RTS

TxD

CTS

GND

1 1

9 way
D-Sub
Female

9 way
D-Sub
Female

11

A terminal emulation program permits control of the SC/MP NIBL computer as if it
were the computer's own keyboard and screen*. Such a program must be set up for
1200 baud, 8 data bits, no parity and 1 stop bit. RTS/CTS flow control must be
enabled and the emulation should be set for local echo. When NIBL is taking input
from the serial port, a break can be instructed by placing a break condition on the
serial line (by typing Control-Break in Hyperterminal). A break can always be
instructed using the 'Break' button on the SC/MP computer itself.

* There are exceptions - see later.

Key timing parameters for program loading

Like some other early BASIC languages, NIBL relied on the paper tape punch and
reader of a teletype as the means of program storage (NIBL has no 'LOAD' or
'SAVE' commands). This simplified the NIBL interpreter but provided no means to
detect or correct any errors that might occur during data transcription to or from
paper tape. Transferring a program to paper tape required the following steps:

1. Type 'LIST' but do not type a Carriage Return
2. Turn on the paper tape punch
3. Type a Carriage Return
4. NIBL will list the entire program which the punch will duly record
5. When the listing is complete, turn off the tape punch

Loading a program from paper tape required the following steps:

1. Type 'NEW' followed by a Carriage Return
2. Turn on the paper tape reader
3. The paper tape reader will play back the program to NIBL
4. When program load is complete, turn off the paper tape reader
5. Type a Backspace (Control-H)

The last step of the loading procedure is simply to delete the prompt '>' that was
recorded to paper tape at the end of the save process. The procedure for saving to
cassette is very similar:

1. Type 'LIST' but do not type a Carriage Return
2. Press the 'Record' button on the cassette recorder
3. Allow a few seconds to record a lead-in on the tape
4. Type a Carriage Return
5. NIBL will list the entire program which will be recorded to cassette
6. When the listing is complete, turn off the cassette recorder

Loading from cassette requires the following procedure:

1. Cue the tape to the lead-in (clear tone)
2. Type 'NEW' followed by a Carriage Return
3. Press the play button on the cassette recorder

12

4. Delete any spurious characters using Backspace (Control-H)
5. The cassette recorder will play back the program to NIBL
6. When program load is complete, turn off the cassette recorder
7. Type a Backspace (Control-H)

There is an inherent hazard in the loading process, namely that the paper tape
reader or the cassette recorder might send characters too quickly for NIBL to
process. The saving grace in the teletype era was the low speed of teletypes - ten
characters per second - and this allowed sufficient time between characters for NIBL
to cope. But at the higher data rate of the cassette interface or serial port, some
means of 'throttling' must be used.

In the context of the serial port, throttling can be achieved by means of the built-in
RTS/CTS hardware flow control. For program load from cassette however, delays
must be inserted during recording to ensure that NIBL is not overwhelmed on
playback. To get some metrics on this issue the NIBL emulator was timed to see
how long it required to process key strokes. It was determined that this emulated
version of NIBL requires 320 microseconds to process ordinary key strokes (i.e. not
control keys). Carriage Return however is another matter, and the key measurement
here is the time required for NIBL to append a new line onto a program. To get a
handle on this figure, a NIBL BASIC program was written which creates a 'worst
case program':

10 REM WORST CASE PROGRAM GENERATOR
20 @#2001=13
30 FOR N=1 TO 574
40 A=#2000+(N*7)-5
50 @A=N/256
60 @(A+1)=N
70 @(A+2)=7
80 @(A+3)=82
90 @(A+4)=69
100 @(A+5)=77
110 @(A+6)=13
120 NEXT N
130 @(A+7)=255
140 @(A+8)=255

This program was typed into NIBL page 1 and run. On termination, a 574 line
program will be found in NIBL page 2, where each line contains only the letters
'REM'. This is very nearly the maximum size of a NIBL program in terms of line
count. Line count matters because when loading a program from cassette, a
significant portion of the time required to process each line is spent finding the
program edit point. Provided a 'NEW' command is issued prior to starting cassette
input, loading will be strictly sequential and will not involve any relocation of existing
program text.

The ultimate test was to time NIBL's response to entry of a new line 575 for this huge
program. This line consists of 70 letter 'A's which is very nearly the longest possible
NIBL line:

13

PAGE=2
575AAA
AAAAAAAAAAAAAAAAAAAAAAA

The NIBL implementation required 130 milliseconds to add this line to the end of the
synthetic program in page 2. Were one to add a period of silence of this duration to
every line recorded to cassette, then a more typical 100 line BASIC program would
require 33 seconds to save and load, 13 seconds of which would be end-of-line
pauses. A more thorough investigation was undertaken whereby the same
experiment was performed for a number of program lengths. The results are shown
in the following plot.

The horizontal axis is program line count while the vertical axis is milliseconds. The
blue trace is actual measurements while the green trace is a linear regression. The
linear relationship is to be expected - the more lines in the program, the longer NIBL
requires to skip over them to find the edit point. The regression identified a formula
as follows:

TLOAD = 17.6 milliseconds + 191 microseconds per line

On this basis, and for programs of up to 400 lines in length, a 100 milliseconds
pause at the end of each line that is written to cassette would guarantee that NIBL
would not be overwhelmed when the program is replayed for reloading. Using this
fixed end-of-line pause, a 400 line program would typically save and load in about 80
seconds.

14

The linear relationship hints at a possible efficiency measure: During recording to
cassette, the appended pause could start at 20 milliseconds and then increase by
200 microseconds for each line that is output. For programs of 400 lines in length,
this would cut the save and load time by around 16 seconds. While significant, it is
felt that this saving does not justify the extra complexity of this scheme.

Program checksum facility

As mentioned earlier, NIBL has no means to validate received characters. At the
time that NIBL was conceived, the expectation was that a NIBL computer would
operate in the same room as the teletype to which it was connected, thereby
eliminating errors resulting from long cables and interference on the public phone
network. This principle still stands and so no additional measures have been
included in this implementation.

The one exception is cassette storage and retrieval, whose bit error rate is less than
exceptional. Occasional cassette read errors might lead to a corrupt program being
loaded and so a facility has been included to compute a checksum for an in-memory
program. The checksum consists of a four digit hexadecimal number. To obtain the
checksum for the program in the current page (as revealed by the NIBL 'PAGE'
pseudo-variable) the user simply types Control-S. The user can then use the
returned value to either verify a loaded program, or to append to a program in
preparation for saving. The latter is easily done by dedicating the last line as a
checksum line:

>{Control-S}
FE76
>LIST 32000

32000 FE76

>_

Provided program execution cannot reach this line then no errors will result from this
line's presence. The checksum calculation excludes lines numbered 32000 or above,
thereby avoiding a 'chasing one's tail' situation where the act of recording the
checksum alters the checksum. Note that the program checksum facility is available
only when NIBL is taking input from the terminal.

15

Chapter 3 Hardware

Terminal

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RD0

RD1

RD2

RD3

RD4

RD5

RD6

RD7

VSS

VSS

RB0
34

39

40

31

30

29

28

19

12

27

22

21

20

33

35

36

37

38

VDD

VDD
32

11

PIC16F877-20/P

/MCLR
1 10k

RC2
17

RA4
6

RE0
8

RE1

RE2
10

9

Host port

Keyboard matrix

RC3

RC4

RA0

RA1

RA2

RA3

RC0
18

5

15

23

2

3

4

12k
Ctrl

Shift

ESC 1 ! 2 " 3 £ 4 $ 5 % 6 ^

TAB Q W E R T Y

 A S D F G H

\ | Z X C V B N

7 & 8 * 9 (0) - _ = + BS

U I O P [{] } ENTER

J K L ; : ' @ # ~

M , < . > / ? SPACE

+5V

GND

EAR

470n

100n

47k

100n

100R

47k

20MHz

22p

22p
OSC1

OSC2
14

13

RC5

RC7
26

24
VIDEO
(75R) 910R

390R

D0

D1

D2

D3

D4

D5

D7

/RD

/WR

/CS

D6

MIC

RC6
25

RC1
16

100n 3

2
5

6

4

+

-

LM386N-1

1k
Cass.

polarity

RA5
7 /ACK

both BAT43

100p

10k

10k
/TRIG

2
VCC /RESET

4 8

GND

1

OUT
3

7555 THR
6

DIS
7

220n

1M

BAT43

100µ

100n

+ DC Buzzer
(Control-G)

16

SC/MP NIBL computer

R C 1

R C 2

R C 3

R C 4

R C 5

R C 6

R C 7

R B 0

R B 1

R B 2

R B 3

R B 4

R B 5

R B 6

R B 7

V S S

V S S

R C 0
1 6

2 5

2 6

3 1

4 0

3 9

3 8

3 3

1 2

3 7

3 6

3 5

3 4

1 5

1 7

1 8

2 3

2 4

V D D

V D D
3 2

1 1

P IC 1 6 F 8 7 7 -2 0 /P

/M C L R
1 1 0 k

R A 5
7

R D 1

R D 2

R D 0
2 0

2 9

1 9

2 1

2 2

2 7

2 8

+ 5 V

G N D

1 0 0 n

2 0 M H z

2 2 p

2 2 p

O S C 1

O S C 2
1 4

1 3

A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7
3

4

5

1 0

6

7

8

9

A 8

A 9

A 1 0

A 1 1

A 1 2

A 1 3

A 1 4
1

2 6

2 5

2

2 3

2 1

2 4

D 0

D 1

D 2

D 3

D 4

D 5

D 7

D 6

D 0

D 1

D 2

D 3

D 4

D 5

D 6

D 7
1 9

1 8

1 7

1 1

1 6

1 5

1 3

1 2

R A 0
2

/R D

R A 1
3

/W R

R A 3
5

/C S

/O E

/W R

2 2

2 7

1 0 k

1 0 k

R D 4

R D 5

R D 6

R D 3

R A 4
6

/A C K

4
/C E

2 0
R A 2

1 0 k

R E 0
8

R D 7
3 0

1 0 k

G N D

V C C
2 8

1 4
1 0 0 n

3 2 k S R A M

T e rm in a l

B re a k

1

R E 2
1 0

R E 1
9

C 1+
1

C 1-
3

4

5
M A X 2 3 2 C P E

R 2 O U T
9

T 2 IN
1 0

R 1 O U T
1 2

T 1 IN
1 1

7

8

1 4

1 3

G N D
R 2 IN

T 2 O U T

R 1 IN

T 1 O U T

C 2-

C 2+

V C C 2
V +V -

6

+

+

+

+

+

1µ
1µ

1µ 1µ
1µ

1 6

1 5 9 w a y D (m a le)

(T xD)

(R x D)

(R T S)

(C T S)

17

Photo of SC/MP NIBL computer

18

Chapter 4 Software

There are a number of supporting files associated with the Orton SC/MP computer:

File Purpose
SCMP computer.ht Hyperterminal file for computer
PIC NIBL.asm PIC source for the SC/MP NIBL computer
trmnl.asm PIC source for the terminal

