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Disclaimer 
 

The information in this document is provided purely as a record of the construction of one of my 
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or 

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for 
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths, 

injuries or losses resulting from the use of the information contained in this document. I have no 
claims to most of the technology used in my projects or described in this document, indeed, it must be 

assumed that I have used much copyrighted and/or patented material. But since I do what I do for 
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking 
the law. It is up to the individual using the information in this document to determine whether, and to 
ensure that,  their use of the information I provide is both legal and safe. This is supposed to be fun. 

 
© Karen Orton 2018 All rights reserved 
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Chapter 1 Motivation and overview 
 
 
The computer described in this document was originally inspired by one the very 
earliest 'first generation' machines specifically, the Electronic Delay Storage 
Automatic Calculator (EDSAC). This machine was built around 1949 and relied on a 
delay medium for its main memory. The initial plan was to build a fully transistorised 
computer however, as time passed the plan evolved into a computer based on 
CMOS logic. As a consequence, the final result more closely resembles the 'Kenbak-
1' computer of the very early 1970s. Accordingly, the new machine was christened 
the 'Karenbak-1'. 
 
 

 
 

The Kenbak-1 computer 
 
 
Like the Kenbak-1, the Karenbak-1 is comprised almost entirely of small scale 
integration (SSI) and medium scale integration (MSI) integrated circuits. The single 
exception is the memory IC for which a shift register is used. The shift registers 
employed in the Kenbak-1 are hard to obtain now, and so this role has been fulfilled 
by a bucket brigade device (BBD) in the new machine. My choice of logic family 
(HCMOS) is entirely down to what I had in my parts store. 
 
The Karenbak-1 is minimalist, employing only 25 ICs, the aim being economy of 
hardware rather than speed. It has a serial arithmetic and logic unit (ALU). Bits are 
processed least significant bit (LSB) first, since this facilitates the natural flow of the 
carry/borrow signal during addition and subtraction. A left shift (useful for 
multiplication) is also easily implemented within this scheme. 
 
The Karenbak-1 is an 8 bit, single address machine with just three registers 
accessible to the user: a program counter (PC); an accumulator (ACC); and a 
memory address register (MAR). A fourth register, the instruction register (IR), is not 
accessible to the user. The Karenbak-1 processor executes approximately 100 
instructions per second. 
 
One operand for dyadic operators is always the ACC. Results of operations are 
always returned to the ACC. Immediate addressing mode is not supported; it is 
expected that constants required by a program will be entered into dedicated 
memory locations during program entry. Indirection is also not directly supported and 
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must be accomplished using self-modifying code, as was the practise in the very 
early days of computing. 
 
The Karenbak-1 supports program jumps, both conditional and unconditional. This 
makes the Karenbak-1 'Turing complete'. There are only two status flags: HALT and 
FLAG, the latter being tested by conditional jump instructions. The Karenbak-1 has 
around twenty instructions in its instruction set. With minor modifications the design 
can address up to 2048 bits of memory. With one or two additional ICs, the word 
length could be increased to 16 bits. 
 
It is important to point out that the minimalism of the Karenbak-1 is not shared by the 
Kenbak-1. In this respect the comparison is a poor one. The latter was aimed at the 
educational market and as such, was entirely representative of other machines of its 
day (for instance, the Kenbak-1 has multiple addressing modes and an index 
register). By contrast, the Karenbak-1 architecture is some twenty years behind the 
Kenbak-1. 
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Chapter 2 Manual controls 
 
 
The Karenbak-1 front panel has the following controls and indicators: 
 
 

RESET button 
Pressing this button puts the computer into known state. 
All registers are cleared and the computer is put into a 
HALT state. Reset does not affect memory contents. 

MODE switch This switch selects between four main activities. 

COMMAND button 
Pressing this button orders the option selected on the 
MODE switch. 

Data input switches 
Data entry for programming or data input is set on these 
switches. 

Address LEDs 
These LEDs show the current address for program entry 
or examination. They display the contents of the MAR. 

Data LEDs 
These LEDs show the current data for program entry or 
examination. They display the contents of the ACC. 

 
 
The MODE switch is the main control. It selects between four basic activities: 
 
 

PROGRAM 

In this mode, pressing the COMMAND button will cause 
the data switches to be displayed on the data LEDs, and 
also stored at the location indicated on the address LEDs. 
The address will automatically increment following the 
write to memory. 

EXAMINE 

In this mode, pressing the COMMAND button will cause 
the contents of the memory at the address indicated on 
the address LEDs to be displayed on the data LEDs. The 
address will automatically increment following the read 
from memory. 

INPUT 

In this mode, pressing the COMMAND button will cause 
the data switches to be loaded into the ACC. This is 
typically done when a program HALTs for input of data. 
The program can be resumed using the EXECUTE mode.  

EXECUTE 

In this mode, pressing the COMMAND button will cause 
the computer to begin execution. A prior reset should be 
performed to run a program from its start. Where a 
program has halted for data input, it can be resumed 
using this mode, whereupon the program will continue 
from the instruction following the HALT. 

 
 
It is permissible to switch between 'PROGRAM' and 'EXAMINE' while stepping 
through memory however, there is no means to decrement the address. 
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Chapter 3 Instruction set 
 
 
While there are notionally single word instructions and two word instructions, all 
instructions are in truth single word. Where an instruction requires an operand 
address, this is obtained using a prior 'load MAR' instruction. 
 
 

Single word instructions 

Opcode Encoding FLAG Description 

HALT 0 0 0 0 0 0 0 0     00 - Stop computer 

NOP 1 1 0 0 0 0 1 1    C3 - No operation 

SETF 1 0 1 0 0 0 0 0     A0 1 Set FLAG 

CLRF 1 0 1 1 0 0 0 0     B0 0 Clear FLAG 

SENS 1 0 0 0 0 0 0 1     81 Z Sense switches 

NOT 1 0 0 0 0 1 1 0     86 Z Invert ACC 

LSH 1 0 0 0 0 1 1 1     87 LSB / MSB Left shift ACC 

LDM 0 1 n n n n n n     40-7F - Load MAR 

Two word instructions 

Encoding 
Opcode 

First word Second word 
FLAG Description 

LD 1 0 0 0 0 0 0 0     80 - Load 

LDN 1 0 0 0 1 0 0 0     88 - Load NOT 

ST 1 0 0 1 0 0 0 0     90 - Store 

ADD 1 0 0 0 0 0 1 0     82 C Add 

SUB 1 0 0 0 1 0 1 0     8A B Subtract 

AND 1 0 0 0 0 0 1 1     83 Z AND 

ANDN 1 0 0 0 1 0 1 1     8B Z AND NOT 

OR 1 0 0 0 0 1 0 0     84 Z OR 

ORN 1 0 0 0 1 1 0 0     8C Z OR NOT 

XOR 1 0 0 0 0 1 0 1     85 Z XOR 

XORN 1 0 0 0 1 1 0 1     8D Z XOR NOT 

JMP 1 1 0 0 0 0 0 0     C0 - Jump always 

JMPS 1 1 0 0 0 0 0 1     C1 - Jump if FLAG set 

JMPC 

LDM 
0 1 n n n n n n 

(40+n) 

1 1 0 0 0 0 1 0     C2 - Jump if FLAG clear 
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FLAG keys: 
   - Not affected 

    Z Set if any result bit is set 
    C Carry 
    B Borrow (inverted) 
 
 
It is not mandatory to precede all instructions with a 'load MAR' instruction. The MAR 
post-increments, thereby allowing data accesses that step through memory. This 
feature is useful for filling memory since repeated store instructions will write the 
same value to multiple locations. 
 
Strictly speaking, the left shift instruction (LSH) is a rotate left instruction, since the 
ACC LSB acquires the initial state of FLAG, while the final state of FLAG is the initial 
ACC most significant bit (MSB). The no operation instruction (NOP) is actually a 
'jump never' instruction. 
 
Finally, the 'sense switches' instruction (SENS) senses the instantaneous settings of 
the data input switches and does not wait for user input. Interactive user input should 
use a HALT instruction to prompt the user, who should then use the INPUT mode to 
enter data. A useful trick when using HALTs in this manner is to precede the HALT 
instruction with a LDM (load MAR) instruction. This will allow a number to be 
displayed on the address LEDs while the user is being prompted, which can serve as 
an identifier for the wanted information. In this respect one can view the HALT 
instruction as a two word instruction e.g. 'HALT 3'. 
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Chapter 4 Processor timing 
 
 
General timing 
 
The processor control signals change state every 512 bit clocks. The main control 
signal is FCH, which alternates between the high state (instruction fetch cycle) and 
the low state (operand fetch and execute cycle). 
 

 

FCH 

Fetch Execute 

Control 
signals * 

 
 
* Control signals include ACE, /ALE, JMP, ME, /MLD, PCE and /STO  
 
 
Timing relative to the bit clock is as follows. 

 

Control 
signals 

CLK 

/CLK 

DST 

/DST 

Data valid 
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Chapter 5 Memory addressing 
 
 
The Karenbak-1 memory consists of a 1024 stage BBD - an MN3207. Although this 
IC is described as having 1024 stages, the actual number of analogue samples held 
at any one time is only half that figure. Hence the IC implements a 512 bit memory. 
The 512 bits are organised as 64 off 8 bit words. This is a small memory, but enough 
to demonstrate simple programs. 
 
The Karenbak-1 uses an obscure method of memory addressing. The PC is of 
course a counter however, its counting ability is used in a novel way to select an 
instruction from memory. During a processor fetch cycle, the PC is clocked by the bit 
clock. But since the PC has only 6 bits, the 512 bit clocks contained within a 
processor cycle result in the PC overflowing repeatedly - eight times to be precise. 
Despite the overflows, 512 counts will still return the PC to its initial state. The PC is 
not therefore corrupted by 'spinning' it in this fashion. 
 
The useful property of the PC overflowing is that each overflow of the PC can be 
used to identify 8 unique bits within the memory. Each initial value of the PC will 
identify a different group of 8 bits, thereby providing an addressing function. The 
MSB of the program counter is in fact used to identify wanted bits, positive 
transitions signalling to the instruction register that a wanted bit is currently emerging 
from the serial memory. The MAR too is a counter, and identifies wanted operand 
bits in the same way as the PC. The result is a strange mapping of ordinal address 
to logical address: 
 
 

Ordinal 
bit 

address 

Logical 
bit 

number 

Logical 
address 

1 31 
2 30 
.. .. 
31 1 
32 0 
33 63 
.. .. 
63 33 
64 

0 

32 
65 31 
66 30 
.. .. 
95 1 
96 0 
97 63 
.. .. 

127 33 
128 

1 

32 
.. 
 

.. 
 

.. 
 

385 31 
386 30 
.. .. 

415 1 
416 0 
417 63 
.. .. 

447 33 
448 

6 

32 
449 31 
450 

7 
30 
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Ordinal 
bit 

address 

Logical 
bit 

number 

Logical 
address 

.. .. 
479 1 
480 0 
481 63 
.. .. 

511 33 
512 

 

32 

 
 
Following a reset the PC contains zero however, the Karenbak-1 uses PC pre-
increment, and so execution will actually begin from location 1 following a reset. 
 
Jump instructions require special attention. During the execution of a jump 
instruction, the MAR is copied to the PC however, an offset is introduced by this 
process. The required setting of the MAR for a jump to location N is given by: 
 

(N + 3210) mod 6410 
 
In practise, this just requires that the most significant bit of the jump address is 
inverted. For example, to make a jump to location 1010 (0A16) the MAR should be 
pre-loaded with 4210 (2A16). To jump to location 5010 (3216) the MAR should be 
loaded with 1810 (1216). 
 
 
Location zero 
 
As mentioned earlier, execution begins from location 1 following a RESET. It is 
recommended that location zero be programmed with the constant zero, as this 
permits the following macro instructions to be used: 
 
 

Address Coding Label Opcode / 
Directive Operand Comment 

      
00  ZERO DATA 00 Constant: 0 
      
  CLR MACRO  Macro: Clear accumulator 
00 40 80  LD ZERO  
   END   
      
  INC MACRO  Macro: Increment accumulator 
00 A0  SETF   
01 40 82  ADD ZERO  
   END   
      
  DEC MACRO  Macro: Decrement accumulator 
00 B0  CLRF   
01 40 8A  SUB ZERO  
   END   
      
  TSTZ MACRO  Macro: Test for zero accumulator 
00 B0  CLRF   
01 40 84  OR ZERO  
   END   
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Chapter 6 Hardware circuits and descriptions 
 
 
Decoupling capacitors are not shown in the circuits that follow. A 100n decoupling 
capacitor should be present close to the power pins of each IC. A single 100µ 
decoupling capacitor is recommended for the entire computer. All LEDs are of the 
low current (2mA) variety. The computer uses a single 5V power rail. 
 
 
Memory 
 

 

IC1 MN3102 

OX1 OX2 OX3 VDD 

VGG CP1 CP2 GND 

IC2 MN3207 

VGG 
 

CP1 CP2 VDD 

IN 

OUT2 GND 

100p 
22k 

100k 

100k 
22p 

50k 

47k 

+ 
3µ3 

+ 

- 

4k7 
10k OUT1 

ACC 

CLK 

/CLK 

MEM 

/STO 

/DST 

4a 
5a 

3a 

IC4 
74HC32 

GND 

VCC 

IC3 4053 

INH 

VDD 

VEE GND 

IC5 
LM339 

GND 

V+ 

1 

2 3 4 

5 6 7 

8 

5 6 2 4 

1 

7 3 

8 

14 

7 

16 

6 7 8 

3 

12 

0 

1 

+ 

- 

5b 

47k 
4k7 

- 

+ 

5c 

4k7 

/RST 

RST 

22k 

+ 

- 

5d 

47k 22k 
4k7 

10k 100n 

/CMD 

4k7 

4k7 

+ 
10µ 

+ 
10µ 

RESET 

COMMAND 

1 2 

3 
7 

6 

1 

5 

4 

2 

8 

9 

14 

11 

10 

13 

12 

13 

14 11 

 
 
 
IC1 furnishes anti-phase clock pulses of high drive capability. These are used 
extensively throughout the design, providing a 100kHz bit clock for the system. 512 
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bit clocks (i.e. around 5 milliseconds) defines the re-circulation time of the memory. It 
also defines one processor cycle. 
 
IC2 drives its OUT1 pin when its CP2 input (CLK) is in the high state. Coincidentally, 
IC2 samples its IN pin at the same time. A re-circulating digital memory is therefore 
created by simply feeding OUT1 back into IN. Input conditioning consists of an 
attenuator and a level shifter to bring the logic signal within the linear range of IC2's 
input. Output conditioning uses a section of a quad comparator package to slice 
IC2's output to convert it back to a logic level. The remaining comparators in the 
quad package are used for de-bouncing the RESET and COMMAND buttons. 
 
An analogue switch (IC3a) controls the input to IC2. Under most circumstances, 
memory data is simply re-circulated. However, for a store instruction, the switch is 
thrown and IC2's input is obtained from the ACC. 
  
 
Program counter and instruction register 
 

 

IC7 74HC4040 

VCC 

/CP 

MR GND 

100p 

Q5
PCE 

/CLK IC6 
74HC132 

GND 

VCC 
16 

8 

2 10 

11 

14 

7 

10k 

6a 

6c 

10k 

100p 

10k 
6b 

DST 

JMP 

/RST 

IC8 
74HC04 

GND 

VCC 
14 

7 

6d 

100p 

8a 

IC9 74HC164 

VCC 

DSA 

GND 

14 

7 

1 
CP 

8 
DSB 

2 
/MR 

9 

FCH 

MEM 

Q0 

3 

OP7 

Q1 

4 
Q2 

5 
Q3 

6 
Q4 

10 
Q5 

11 
Q6 

12 
Q7 

13 

OP6 

OP5 

OP4 

OP3 

OP2 

OP1 

OP0 

1 

2 

4 

5 
9 

10 

2 

3 

6 

12 

13 
1 

8 

11 

 
 
 
 
As mentioned earlier in this document, spinning the PC does not corrupt it however, 
there is still a need to increment the PC in order to step through instructions. This is 
achieved by another obscure method: the positive edge of the PCE signal injects an 
extra count in addition to the 512 accrued during the instruction fetch cycle. This 
provides a PC pre-increment. 
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Memory address register 
 

 

ME 

/CLK 

IC10 
74HC132 

GND 

VCC 
14 

7 
10k 

10a 
10b 

100p 

IC13 
74HC74 

GND 

VCC 
14 

7 

IC11 74HC193 

VCC 

CPU 

GND 

8 

5 
/TCD 

13 
CPD 

4 

DST 

RST 

/PL 

11 
Q3 

7 
Q2 

6 
Q1 

2 
Q0 

3 
MR 

14 

OP5 

OP4 

OP3 

OP2 

OP1 

OP0 

D0 
15 

D1 
1 

D2 
10 

D3 
9 16 

12 
/TCU IC12 74HC193 

VCC 

CPU 

GND 

8 

5 
/TCD 

13 
CPD 

4 

/PL 

11 
Q3 

7 
Q2 

6 
Q1 

2 
Q0 

3 
MR 

14 

D0 
15 

D1 
1 

D2 
10 

D3 
9 16 

12 
/TCU

/MLD 

CP 

/S 

13a 

/R 

D 

/Q

Q

/DST 

CLK 

0 1 2 3 4 5 
ADDRESS LEDS 

all 1k 

1 

2 

4 

5 

2 

3 

3 
6 

5 

6 

4 

1 

 
 
 
Like the PC, the memory address register (MAR) is a counter. During an operand 
fetch/execute processor cycle, the MAR is spun, and positive transitions of the MSB 
of the MAR are used to signal to the ACC and FLAG that a wanted operand bit is 
currently emerging from the serial memory. The MAR has a post-increment function. 
It is implemented in a very similar way to the program counter pre-increment. Post 
increments of the MAR are used during manual program entry and examination. 
 
The MAR signals the presence of wanted data on the output of the memory by 
pulsing DST and /DST. These signals would typically be used to clock data into the 
ACC, or to reroute the memory input source to allow data to be stored. 
 
The MAR is key to the implementation of jump instructions. During the execute cycle 
of a jump instruction, the DST signal is gated onto the reset input of the PC (IC7 pin 
11). As a result, 8 reset pulses are delivered to the PC although only one is strictly 
necessary. These timed resets force the PC into synchronism with the MAR and 
ensure that the final state of the PC matches that of the MAR, subject to an offset. 
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Accumulator, switches and FLAG 
 
The ACC is a shift register (IC15). When performing an arithmetic or logic operation, 
the last stage (Q7) provides one bit of one operand. The corresponding bit of the 
other operand comes from the memory. The result of the operation is shifted back 
into the ACC via IC15's DSA input. Input from the switches is provided by IC16, a 
multiplexer. During program entry or data input, the data on the switches appear bit 
at a time on the IP signal. 
 
An analogue switch (IC3b) controls the input to IC15. During execution of an 
arithmetic or logical operation, the switch is thrown to select the output of the ALU. 
During a store instruction, ACC data is re-circulated so as to preserve the ACC 
contents. A similar analogue switch (IC3c) preserves the state of the FLAG (held by 
flip-flop IC13b) during a store instruction. 
 
 
Instruction decode and sequencing 
 
IC17 maintains track of data in the circulating memory. It is also responsible for the 
main sequencing of the computer: Q9 of this counter alternates between 512 bit 
clocks high, and 512 bit clocks low. When the computer is running, the high state of 
this signal corresponds to an instruction fetch cycle, while the low state corresponds 
to the operand fetch and execute cycle. The stopped state is implemented as a 
protracted HALT instruction (the all-zeros state of the IR). While the /Y0 output of 
IC20a is low IC17 Q9 cannot drive FCH, and so instruction fetches cease. This state 
can be exited by setting the MODE switch to the last setting (EXECUTE) and 
pressing the COMMAND button. 
 
IC18 and associated gates generate a negative going pulse of exactly one processor 
cycle duration when the COMMAND button is pressed. This pulse is used to 
implement the various mode switch functions. Depending on the setting of the 
MODE switch, the COMMAND button can order a write of switch data to memory, a 
read of data from memory into the ACC, a transfer of switch data to the ACC (for 
interactive data input) or a program start. 
 
Finally, IC21a,b and IC22a implement the conditional logic for the jump instruction. 
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14a 
DST 

ACE 

/RST 

14b 8b 

IC15 74HC164 

VCC 

DSA 

GND 

14 

7 

1 
CP 

8 
DSB 

2 
/MR 

9 

Q0 

3 
Q1 

4 
Q2 

5 
Q3 

6 
Q4 

10 
Q5 

11 
Q6 

12 
Q7 

13 

 

3b 0 

1 

 
1 2 3 6 7 

DATA LEDS 
4 5 

/ALE 

AOA 

MODE 

IC16 74HC151 

VCC 

Y

GND 

16 

8 

5 
S2 

9 
S0 

11 
S1 

10 

I7 

12 
I6 

13 
I5 

14 
I4 

15 
I3 

1 
I2 

2 
I1 

3 
I0 

4 

B2 

B1 

B0 

/Y 
6 

/E 
7 

3c 0 

1 

DATA SWITCHES 

FLG 

CP 

/S 

13b 

/R 

D 

/Q

Q

/FLG 

ACC 

/RST 

/CF 

AOF 
/SF 

0 1 2 3 6 7 4 5 

IP 

1 

2 

10 

9 12 

11 

4 

15 

3 

4 9 

8 

3 
4 

5 

2 

1 

5 
10 

4 

3 

13 

all 1k 

all 10k 

6 

0 

100p 

100p 

IC14 
74HC00 

GND 

VCC 
14 

7 

10k 
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100p 

/CLK 
IC21 

74HC32 
GND 

VCC 
14 

7 

10k 

10c 10k 

ME 

IC20 
74HC139 

GND 

VCC 
16 

8 

8c 

FCH 

OP7 

OP6 

OP5 

OP4 

10k 

10k 

PCE 4b 

/Y3

/Y2

/Y1

/Y0

/E 

A1 

A0 

20a 

MODE 

4c 

JMP 

/MLD 

/Y3

/Y2

/Y1

/Y0

/E 

A1 

A0 

20b 

/CF 

/SF 

/STO 

/ALE 

4d 

ACE 

8d 

/FLG 

OP1 

FLG 

OP0 

19a 

22a 

19d 

IC17 74HC4040 

VCC 

/CP 

MR GND 

Q9

16 

8 

14 10 

11 

14c 
14d 

HALT LED 

B2 

B1 

B0 

Q8 

12 
Q7 

13 
Q6 

4 

9 

10 

4 

5 

6 

9 

10 

1 

3 

2 

15 

13 

14 

12 

13 

1 

2 

1 

2 
9 

12 

13 
9 

10 

8 

6 

5 

8 

11 

7 

6 

5 

4 

9 

10 

11 

12 

11 

3 

3 8 

8 

12 13 

11 

1k 

IC19 
74HC00 

GND 

VCC 
14 

7 

CP 

/S 

18a 

/R 

D 

/Q

Q
2 

3 

5 

6 

4 

1 

CP 

/S 

18b 

/R 

D 

/Q

Q
12 

11 

9 

8 

10 

13 

IC18 
74HC74 

GND 

VCC 
14 

7 

/CMD 

10k 

100p 

10d 
12 

13 
11 

21a 
1 

2 
3 

21b 
4 

5 
6 

19c 

9 10 

8 

19b 
4 

5 
6 

IC22 
74HC00 

GND 

VCC 
14 

7 

1k 

 
 
 
 
 



16 

Arithmetic and logic unit 
 

 

VCC 
I0 

GND 

Y

IC23 
74HC86 

GND 

VCC 

16 

8 

5 4 

14 

7 

22b 

AOA 

MEM 

OP0 

MODE 

IP 

OP3 

OP1 

AOF 

OP2 8e 

23a 

23b 
23c 

22d 

22c 

ACC 

FLG 

I1 3 

I2 2 

I3 1 

I4 
15 

I5 14 

I6 13 

I7 12 

/Y 6 

/E
7 

S0
11 

S1
10 

S2 9 

21c 

23d 

8f 

VCC 
I0 

GND 

Y

16 

8 

5 4 

I1 3 

I2 2 

I3 1 

I4 15 

I5 14 

I6 13 

I7 
12 

/Y 6 

/E 7 

S0
11 

S1
10 

S2 9 

21d 

IC24 
74HC151 

IC25 
74HC151 

1 

2 
3 

4 

5 
6 9 

10 
8 

12 

13 
11 

4 

5 
6 

9 

10 
8 

12 

13 
11 

9 

10 
8 

12 

13 
11 11 

13 12 

10 

10k 

1k 

 
 
 
The ALU is fairly conventional, save for processing only one bit at a time. 
Multiplexers (ICs 24 and 25) select the operation to be performed for both the ACC 
and the FLAG. While not strictly an arithmetic or logical operation, the load 
instruction is implemented in the ALU (input I0 of the two multiplexers). Input from 
the switches is possible on multiplexer input I1. Switch input can be user-interactive 
(using INPUT mode while the computer is HALTed) or they can be sensed 
asynchronously using the SENS instruction. 
 
A full adder provides for both addition and subtraction, the FLAG serving to 
propagate carry/borrow status. For add instructions, the FLAG should be cleared 
prior to execution. For subtract instructions, the FLAG should be set prior to 
execution. On completion of an addition or subtraction instruction, a word 
carry/borrow is deposited in FLAG, thereby permitting multi-word additions and 
subtractions. Note that one bit of the operation code (OP3) selects between normal 
or inverted operand data from memory. This greatly increases the flexibility of the 
ALU. 
 



17 

The FLAG performs a special function during execution of logical operations (AND, 
ANDN, OR, ORN, XOR, XORN or NOT). When one of these instructions is 
executing, the FLAG will be logically ORed with all bits of the result. Consequently, 
the FLAG should be cleared prior to execution, so as to enable a zero result to be 
tested for after execution. Finally, the multiplexer I7 inputs implement the left shift 
instruction, whereby the ACC and FLAG simply exchange states. 
 
 
List of ICs 
 

IC number(s) Pin count Type 

IC1 8 MN3102 

IC2 8 MN3207 

IC3 16 CD4053 

IC4, 21 14 74HC32 

IC5 14 LM339 

IC6, 10 14 74HC132 

IC7, 17 16 74HC4040 

IC8 14 74HC04 

IC9, 15 14 74HC164 

IC11, 12 16 74HC193 

IC13, 18 14 74HC74 

IC14, 19, 22 14 74HC00 

IC16, 24, 25 16 74HC151 

IC20 16 74HC139 

IC23 14 74HC86 
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Card layout 
 
 

IC20 IC18 IC17 IC7 IC24 

IC4 IC19 IC8 IC21 IC23 

IC2 IC1 IC14 IC9 IC6 IC22 

IC13 IC12 IC10 IC25 

IC5 IC3 IC15 IC11 IC16 

Mode 
switch 

Buttons, 
address/halt LEDs 

Data LEDs Data switches 

Power 
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Chapter 7 Photos 
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Chapter 8 Finer points of the design 
 
 
The capacitor on the output of IC2 serves to extend the valid time of the conditioned 
memory output. This gives other devices within the computer time to capture 
memory data as CLK returns to the low state and IC2's output returns to a quiescent 
level. 
 
The rising edge of PCE injects a count into IC7 (the PC). This provides the PC pre-
increment. It is possible that this count may cause the IR to shift in an erroneous bit. 
This in itself is not a problem because 8 further shifts would then occur, and the 
erroneous bit would ultimately be shifted out of the IR. The hazard is transient false 
decodes on the outputs of IC20, which may occur if IC20's address inputs (which 
derive from the IR) change too close to the rising edge of FCH. While it is thought 
that this is unlikely, the PCE signal is delayed slightly by an RC network on the input 
to IC6a. This will prevent transient false decodes from ever occurring. 
 
During execution of a jump instruction, reset pulses are delivered to IC7 (the PC) 
which originate from the MAR's DST signal. The problem is that the trailing edges of 
these reset pulses coincide with valid count transitions on IC7's clock input. This 
makes it uncertain whether the count transition will be recognised and acted upon. 
To ensure that these count transitions are NOT acted upon, the reset pulses are 
delayed slightly by an RC network on the input to IC6c. 
 
During an instruction fetch, the IR shifts in memory data on positive transitions of 
IC7's (the PC) Q5 output. These shifts must be gated by the FCH control signal 
however, it is not sufficient to use a simple gate because, depending on the initial 
state of IC7 Q5, an additional shift may occur on the rising edge of FCH. This might 
lead to transient false decodes (see paragraph before last). To prevent this, a 
monostable is implemented by a CR network on the input to IC6d. 
 
The MAR (ICs11,12) is incremented on the leading edge of the clock. If the MSB of 
the MAR makes a positive transition as a result, then IC13a will be clocked, 
however, IC13a is only just coming out of reset at this time. In order to move the 
MAR increment, and any resulting IC13a clock, away from this condition (CLK low), 
a monostable is implemented by a CR network on the input to IC10b. The MAR is 
incremented at the end of the pulse on IC10b's output. 
 
The MAR is also incremented on the falling edge of ME. This provides the MAR 
post-increment. This increment does not result in a spurious DST pulse on the output 
of IC13a because this flip-flop is held in the reset state (by CLK) when ME is falling. 
 
Control signals must change only between bit clocks (see timing diagrams in 
Chapter 4). This is ensured by an RC delay network on the input to IC10c. 
 
ICs 13b and 15 are often called upon to sample their own output. It is important to 
ensure that their inputs (D for IC13b, DSA for IC15) have sufficient data hold time. 
The capacitors on these inputs extend this hold time. 
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Chapter 9 Software 
 
 
No assembler has yet been written for the Karenbak-1 and the following example 
program is hand coded. Presented is a simple program which multiplies two 
unsigned eight bit numbers: 
 
 

Address Coding Label Opcode / 
Directive Operand Comment 

      
00 00 ZERO DATA 00 Constant: 0 
      
01 40 80 START LD ZERO Prepare to multiply: 
03 75 90  ST HBE  Clear HBE 
05 90  ST   Clear RESH 
06 90  ST   Clear RESL 
07 79 80  LD ONE  Initialise bit mask 
09 78 90  ST MASK  
0B 74 80 LOOP LD MULB Multiply loop: Bit set? 
0D B0  CLRF   
0E 78 83  AND MASK  
10 7F C2  JMPC @SHIFT  
12 73 80  LD MULA Yes - add to result 
14 B0  CLRF   
15 77 82  ADD RESL  
17 77 90  ST RESL  
19 75 80  LD HBE  
1B 76 82  ADD RESH  
1D 76 90  ST RESH  
1F 73 80 SHIFT LD MULA Shift everything along 
21 B0  CLRF   
22 87  LSH   
23 73 90  ST MULA  
25 75 80  LD HBE  
27 87  LSH   
28 75 90  ST HBE  
2A 78 80  LD MASK  
2C B0  CLRF   
2D 87  LSH   
2E 78 90  ST MASK  
30 6B C2  JMPC @LOOP All done? 
32 00  HALT  Yes - stop 
      
33 A7 MULA DATA A7 First number to multiply (167) 
34 5D MULB DATA 5D Second number to multiply (93) 
35 00 HBE DATA 00 High byte extension 
36 00 RESH DATA 00 Result (high byte) 
37 00 RESL DATA 00 Result (low byte) 
38 00 MASK DATA 00 Walking bit mask 
39 01 ONE DATA 01 Constant: 1 

 
 
Note: The '@' symbol precedes jump operands to inform the 'assembler' that the 
formula supplied in Chapter 5 should be applied.   
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Chapter 10 Conclusion 
 
 
Historically speaking, the fixed cycle time of the Karenbak-1 would have been 
considered wasteful, even though it leads to a much simplified design. Early 
computing machines that were based on circulating memory instead used 
'coincidence detectors' to indicate when wanted data was emerging from the delay 
medium. Instruction fetch and execution were considered separate processes which 
weren't constrained to the memory circulation period. This freedom resulted in a 
potential doubling of a machine's speed. 
 
Nonetheless, the Karenbak-1 is a successful proof of concept machine. It is 
expected that the design will provide useful insights into the inner workings and 
principles of computer hardware. The design's only major detraction is that it is 
severely lacking in memory, and this limits the scope of programs which can be 
demonstrated. 
 
It is intended that a second machine will be constructed at a future date which will be 
based on the same principles as the Karenbak-1. This machine might use discrete 
transistors as opposed to IC logic. It might also bring out the PC, IR and FLAG to 
dedicated LEDs to create a classic 'blinkenlights' machine. Regardless, this new 
machine will most definitely have a larger memory. 
 
The Karenbak-1 is currently limited to stepping through memory in order for the user 
to modify (PROGRAM) or interrogate (EXAMINE) the memory contents. This is just 
about tolerable where there are only 64 words of memory. With a larger memory 
however a means of setting the address directly (or at the very least, the means to 
step backwards through memory) will become a necessity. 
 


